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1 Introduction
The original goal of this research internship was to formalize some of the proofs from “Sort-
ing with bialgebras and distributive laws”, which uses bialgebras and distributive laws to
analyze sorting algorithms from a category theory perspective. I was planning to use ex-
isting definitions from the agda-categories[3] library, but it quickly became apparent
that:

a) I would need to refactor some existing library code;

b) what I began formalizing were the abstract categorical notions, independent of their
application to sorting, which as such belonged in the library itself.

I ended up formalizing only definitions and proofs about the abstract notion of bial-
gebras for a simple distributive law, and so was able to contribute my entire for-
malization to the agda-categories library. The code I contributed can be found
at the pertinent pull-request: “μ-Bialgebras by cxandru · Pull Request #362 ·

agda/agda-categories”.
During the course of my internship, I was made aware of [1] and [4] as more abstract

categorical references for the theory of bialgebras & distributive laws. Those two papers
present the the theory in the context of its applications to operational semantics, which
is a great illustration of a single categorical notion having many varied applications.

2 Background, Definitions and Notation
2.1 Maths
2.1.1 Background

In theoretical computer science, syntax has long been modelled via algebras. An ex-
ample of syntax is the grammar of regular expressions for an alphabet 𝐴, which has
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the signature Σ = {∅ ∶ 0, 𝜀 ∶ 0, literal ∶ 0, concat ∶ 2, | ∶ 2, ∗ ∶ 1}. Regular ex-
pression terms and their interpretation as languages form algebras for the functor:
𝑅(𝑋) = 1 + 1 + 𝐴 + (𝑋 × 𝑋) + (𝑋 × 𝑋) + 𝑋. Universal coalgebra [7] is an ap-
proach of modelling many kinds of transition systems via coalgebras. An example of
transition systems are deterministic finite automata for an alphabet 𝐴. They can be
described as coalgebras for the functor (−)𝐴 × 2 (where the − × 2 encodes whether a
state is accepting and (−)𝐴 encodes the label with which a transition happens). The
seminal work [8] by Turi and Plotkin used this way of modeling syntax and behavior
to describe SOS (structural operational semantics) specifications as distributive laws of
syntax over behavior functors. For more background on the history and development of
these theoretical notions in the field of operational semantics, see [4].

In the field of programming language analysis and design, algebraic data types have
been modeled as fixpoints for so-called shape/base functors [5]. The well-known cons-
list for elements of type 𝐴 e.g. can be modelled as the fixpoint of the functor 𝐿(𝑋) =
1 + 𝐴 × 𝑋. In languages without termination requirements (languages, that is, with a
complete partial order domain semantics) the least and greatest fixpoints coincide, which
means that data types are carriers of both the initial algebra and the final coalgebra for
their base functor. This way of modelling recursive data types allows for describing
functions into such a type as coinductive extensions of coalgebras, and functions out of
them as inductive extensions of algebras, a method which was popularized in [6]. In [2],
sorting algorithms are built up of functions that destruct an input type to construct an
output type, described by distributive laws of the input type’s base functor over that of
the output type.

2.1.2 Definitions and Notation

1. Given two endofunctors 𝑇 and 𝐹 on a category 𝒞, we can define a (𝑇 , 𝐹)-Bialgebra
to be an object of 𝒞 equipped with the structure of a 𝑇-Algebra and an 𝐹-Coalgebra,
i.e. a triple (𝐴, 𝑎, 𝑐), where 𝑎 ∶ 𝑇 𝐴 → 𝐴 and 𝑐 ∶ 𝐴 → 𝐹𝐴. 𝜇 1 is a distributive
law (of 𝑇 over 𝐹): a natural transformation 𝜇∶ 𝑇 𝐹 ⇒ 𝐹𝑇. A (𝑇 , 𝐹 , 𝜇)-Bialgebra
is a (𝑇 , 𝐹)-Bialgebra (𝐴, 𝑎, 𝑐) such that 𝑐 ∘ 𝑎 = 𝐹𝑎 ∘ 𝜇𝐴 ∘ 𝑇 𝑐. In the following, we
may refer to 𝑇 as the “algebraic” functor and to 𝐹 as the “coalgebraic” functor.
Note: In the context of bialgebras for operational semantics, these functors are
often referred to as the “syntax” and “behaviour” functor, respectively [4].

2. Bialgs(𝑇 , 𝐹 , 𝜇) is the category of (𝑇 , 𝐹 , 𝜇)-Bialgebras. In addition to the explicit
construction of Bialgs(𝑇 , 𝐹 , 𝜇) as outlined above, there are two other ways to con-
struct it:

1Note that in the literature the distributive law is usually called 𝜆, however λ is a keyword for introduc-
ing function abstraction in Agda, therefore I opted to go for 𝜇 instead. Jurriaan Rot rightfully pointed
out to us that 𝜇 is often used to refer to the multiplication operation of monads, and suggested I
use 𝛿. However, I had already written a considerable amount of code by that point. Additionally,
“delta” is often associated with a unit of change in common parlance (from physics). Therefore, I
stuck with 𝜇.
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a) We can lift 𝐹 via 𝜇 to the category of Algs(𝑇 ) (see Categories.Functor.

Construction.LiftAlgebras), giving us the functor: ̂𝐹 ∶ Algs(𝑇 ) → Algs(𝑇 ),
where ̂𝐹0 ∶ 𝑇 𝐴

𝑎
−→ 𝐴 ↦ 𝑇 𝐹𝐴

𝜇𝐴
−−→ 𝐹𝑇 𝐴

𝐹𝑎
−−→ 𝐹𝐴.

b) Dually we can lift 𝑇 via 𝜇 to the category of Coalgs(𝐹) (seeCategories.
Functor.Construction.LiftCoalgebras), giving us the functor: ̂𝑇 ∶
Coalgs(𝐹) → Coalgs(𝐹), where ̂𝑇0 ∶ 𝐶

𝑐
−→ 𝐹𝐶 ↦ 𝑇 𝐶

𝑇 𝑐
−→ 𝑇 𝐹𝐶

𝜇𝐶
−−→ 𝐹𝑇 𝐶.

Then the categories of Coalgs( ̂𝐹 ) and Algs( ̂𝑇 ) are two other ways of constructing
the category Bialgs(𝑇 , 𝐹 , 𝜇).

3. Given an initial object ⟨⊥, in⟩ in the category of Algs(𝐹) and a target Algebra
⟨𝐴, 𝑎⟩, we denote the unique 𝐹-Algebra-Morphism ⦅𝑎⦆ ∶ ⊥ → 𝐴.
Given a terminal object ⟨⊤, out⟩ in the category of Coalgs(𝐹) and a source Coal-
gebra ⟨𝐶, 𝑐⟩, we denote the unique 𝐹-Coalgebra-Morphism 〖𝑐〗 ∶ 𝐶 → ⊤.
These notations for the initial/terminal morphisms are taken from [6] and are
called “banana brackets” and “lenses” respectively.

4. We may, as [2] call initial 𝑇-Algebras 𝜇𝑇 and terminal 𝐹-Coalgebras 𝜈𝐹. These are
the usual notations for the least/greatest fixpoints of functors. These constructions
are specific to certain types of categories; we will be using them here however
to refer to any initial/terminal (Co)Algebras, as initial/terminal objects always
appear in contravariant positions in the propositions we treat.

5. We may refer to a (Co)Algebra ⟨𝐴, 𝑎⟩ interchangeably by its carrier (𝐴) or asso-
ciated morphism (𝑎). This is a notational ambiguity that is not granted us in the
Agda code.

2.2 Agda
2.2.1 Background

Agda is a dependently typed programming language and proof assistant. Unlike other
proof assistants, there is no tactic language, so one has to provide proof terms directly.
Interactivity is provided via typed holes that one can refine in the interactive editor
mode. As a programming language, it has an advanced module system, of which I made
heavy use in my code. The reason I chose Agda and not, e.g. Coq, was that I hadn’t
used it before and had the ambition to learn it, for which this project seemed a perfect
opportunity.

2.2.2 Notation

• Identifiers in Agda may contain any unicode characters, including previously op-
erators. I.e. e.g. Foo⇒Bar, foo∘bar are valid identifier names and are not to be
confused with the terms Foo ⇒ Bar, foo ∘ bar

• We may define mixfix operators by putting underscores in argument positions of
an identifier name. So _+_ defines an infix operator, and ⦅_⦆ a paired delimiter.
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• we call the category Algs(𝐹 op) coF-Algebras to distinguish it from Coalgs(𝐹)
(F-Coalgebras).

• A,α are the fields for the carrier and associated morphism of a (Co)Algebra.

• f,commutes are the fields for the 𝒞-Morphism and commutativity condition of a
(Co)Algebra-Morphism.

• η is the field for instantiating a natural transformation at an object.

3 Contributions
I formalized all the definitions (Section 2 1,2) and a number of proofs pertaining to
bialgebras. Using [1] as reference, these include Definition 3.2.2, Theorem 3.2.3 (with
lemmata 3.2.4 and 3.2.5). I also proved, using [4] as a reference, Proposition 12 and a
version of Theorem 13 (which is the same as [2, p. 73]). I used the preexisting Algebra,
Coalgebra and F-Algebras modules, but refactored the (Co)Algebra modules and
defined F-Coalgebras, dualizing proofs from F-Algebras. I sucessfully contributed
the entirety of my formalization to the agda-categories library. In the following I
outline details of the formalization I deem noteworthy.

3.1 Refactoring (Co)Algebra

Originally, the module Categories.Functor.Algebra contained the following defini-
tion:
record F-Algebra (F : Endofunctor C) : Set (o ⊔ ℓ) where

open Category C
field

A : Obj
α : Functor.F₀ F A ⇒ A

In the definition of Bialgebra, however, I needed to specify the carrier of the algebra.
So I factored out the following definition:
F-Algebra-on : Obj → Set ℓ
F-Algebra-on A = F₀ A ⇒ A

And used in in the definition of Bialgebra:

record μ-Bialgebra (T F : Endofunctor C) (μ : DistributiveLaw T F)
…
field
A : Obj
a₁ : F-Algebra-on T A
c₁ : F-Coalgebra-on F A

In converting between the different representations for the Bialgebras category however,
I needed to also “get” a₁/c₁ as (Co)Algebras. Therefore I wrote the following code:

to-Algebra : {A : Obj C} → {F : Endofunctor C} → (F-Algebra-on F A) → (F-Algebra F)
to-Algebra {A = A} α = record {A = A; α = α}
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Since via the Curry-Howard correspondence dependent products encode existentials,
what we are doing here is (un)wrapping existentials. I thought it an interesting lan-
guage design question whether there could be a way to write datatypes such that this
(un)wrapping doesn’t require extra (boilerplate) code.

3.2 Dualizing proofs from F-Algebras for F-Coalgebras
See Categories.Category.Construction.F-CoAlgebras

For my formalization I needed to define the category of Coalgs(𝐹). Now I didn’t
want to make it a “verbatim dual” (as these are called in comments in the library) of
Categories.Category.Construction.F-Algebras. We take a verbatim dual to mean
essentially a code clone of a dual construction except for perhaps compositions switched
around in proofs. However, the datatype for Coalgebra (Morphisms) was already a
verbatim dual of that for Algebras. So the only place I could still prevent code clones
was in the proofs. I did this by writing suitable conversion functions to use proofs from
Algs(𝐹 op).

F-Coalgebras {C = C} F = record
{ Obj = F-Coalgebra F
; _⇒_ = F-Coalgebra-Morphism
…

; _∘_ = λ α₁ α₂ → record
{ f = f α₁ ∘ f α₂
; commutes = F-Algebra-Morphism.commutes

(F-Coalgebra-Morphism⇒coF-Algebra-Morphism α₁
coF-Algebras.∘
F-Coalgebra-Morphism⇒coF-Algebra-Morphism α₂)

}
; id = record { f = id; commutes =

F-Algebra-Morphism.commutes coF-Algebras.id }
…

3.3 Elegant proof for LiftAlgebras
See Categories.Functor.Construction.LiftAlgebras

We have seen that we can lift 𝐹 via 𝜇 to the category of Algs(𝑇 ), giving us the
functor: ̂𝐹 ∶ Algs(𝑇 ) → Algs(𝑇 ). The interesting part of constructing this functor is
proving that 𝐹1𝑓 is a 𝑇-Algebra-Morphism. The proof obligation is the following: Let
𝑓∶ (𝑋, 𝑥) → (𝑌 , 𝑦) be a 𝑇-Algebra-Morphism. Show ̂𝐹 𝑓 ∶ ̂𝐹𝑋 → ̂𝐹𝑌 is also a 𝑇-Algebra-
Morphism. That is, the following diagram commutes:

𝑇 𝐹𝑋 𝑇 𝐹𝑌

𝐹𝑇 𝑋 𝐹𝑇 𝑌

𝐹𝑋 𝐹𝑌

𝜇𝑋

𝑇 𝐹𝑓

𝜇𝑌

𝐹𝑥

𝐹𝑇 𝑓

𝐹𝑦
𝐹𝑓
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This can be shown quite elegantly and succinctly with composition of commuting
squares, by noticing that the upper is the naturality square of 𝜇 for 𝑓 while the lower is
the Algebra-Morphism square for 𝑓, lifted via 𝐹. I originally provided a more involved
step-by-step proof:

commut {X} {Y} a = begin
(F .F₁) (a .f) ∘ ((F .F₁) (X .α) ∘ (μ .η) (X .A))

≈⟨ pullˡ (⟺ (homomorphism F)) ⟩
(F .F₁) ((a .f) ∘ (X .α)) ∘ (μ .η) (X .A)

≈⟨ ∘-resp-≈ˡ (F-resp-≈ F (commutes a)) ⟩
(F .F₁) ((Y .α) ∘ ((T .F₁) (a .f))) ∘ (μ .η) (X .A)

≈⟨ ∘-resp-≈ˡ (homomorphism F) ⟩
((F .F₁) (Y .α) ∘ ((F .F₁) ((T .F₁) (a .f)))) ∘ (μ .η) (X .A)
≈⟨ pullʳ (sym-commute μ (f a)) ⟩
(F .F₁) (Y .α) ∘ (μ .η) (Y .A) ∘ (T .F₁) ((F .F₁) (a .f))
≈⟨ sym-assoc ⟩
((F .F₁) (Y .α) ∘ (μ .η) (Y .A)) ∘ (T .F₁) ((F .F₁) (a .f)) ∎

I subsequently found a combinator in the library for composing commuting squares, and
was able to use that to provide an elegant one-line proof:

commut {X} {Y} a = ⟺ (glue (⟺ ([ F ]-resp-square (commutes a))) (commute μ (f a)))

It should be noted however that it took quite some trial and error to arrive at the precise
way the diagrams needed to be composed, and originally I had many let-expressions
for subterms in my code to check that they had the types I expected. This was quite
tedious to do and the first time that I got the impression that Agda can perhaps be
called a proof checker, but not so much a proof assistant.

3.4 Lifting initial/terminal objects
Initial objects in Algs(𝑇 ) may be lifted to Coalgs( ̂𝐹 ), and terminal objects in Coalgs(𝐹)
to Algs( ̂𝑇 ). We will consider the proof for lifted initials in detail, then discuss the dual
proof of lifted terminals.

We lift ⊥ to ⦅ ̂𝐹0⊥⦆. For some target object ⟨⟨𝑋, 𝑎⟩, 𝑐⟩ we define the initial morphism
as ⦅𝑎⦆. It remains to be shown that this 𝑇-Algebra-Morphism is in fact an ̂𝐹-Coalgebra-
Morphism, i.e. that ̂𝐹 ⦅𝑎⦆ ∘ ⦅ ̂𝐹⊥⦆ = 𝑐 ∘ ⦅𝑎⦆. This is the case because both compositions
are 𝑇-Algebra-Morphisms from the initial object with the same target (in the agda-

categories library this lemma is called !-unique₂). The below diagram, where arrows
are maps in the base category 𝒞 shows all the involved objects and arrows:
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𝑇 ⊥ 𝑇 𝑋

⊥ 𝑋

𝐹⊥ 𝐹𝑋

𝑇 𝐹⊥ 𝑇 𝐹𝑋

𝑇⦅𝑎⦆

in

𝑇⦅ ̂𝐹⊥⦆

𝑎

𝑇 𝑐

⦅𝑎⦆

⦅ ̂𝐹⊥⦆ 𝑐

( ̂𝐹=𝐹)⦅𝑎⦆̂𝐹 in

𝑇 ̂𝐹⦅𝑎⦆

̂𝐹𝑎

Below is the corresponding agda-code:

liftInitial : Initial (F-Algebras T) → Initial (F-Coalgebras LiftAlgebras)
liftInitial μT = record

{ ⊥ = record
{ A = ⊥
; α = ⦅ F₀ ⊥ ⦆
}

; ⊥-is-initial = record
{ ! = λ {A = X} →

let
a = F-Coalgebra.A X
c = F-Coalgebra.α X

in record
{ f = ⦅ a ⦆
; commutes = !-unique₂ (c ∘ ⦅ a ⦆) (F₁ ⦅ a ⦆ ∘ ⦅ F₀ ⊥ ⦆)
}

; !-unique = λ {A = X} g → !-unique (F-Coalgebra-Morphism.f g)
}

}
where
open Initial μT
open Category (F-Algebras T)
open Definitions (F-Algebras T)
open MR (F-Algebras T)
open HomReasoning
open Equiv
private

⦅_⦆ = λ X → ! {A = X} -- "banana brackets" (Meijer 1991)
open Functor LiftAlgebras

Note that we can be quite concise because all reasoning happens in Algs(𝑇 ).
I initially tried to dualize the above proof for the dual theorem, arguing that, morally,

LiftCoalgebras T F μ ≅ (LiftAlgebras (Functor.op F) (Functor.op T) μ-op).
This (modulo some conversion code I talked about in Section 3.2) was how I originally2

had defined LiftCoalgebras. However, it turned out that dualizing liftInitial

seemed to require a hopeless amount of glue code3. Therefore I gave a “verbatim” dual
instead.

2see LiftCoalgebras at a9abd67
3see F-Coalgebras at 5dbdd6a for some of the (finally: discarded) glue code
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Bridge
The lemma we are finally trying to prove is that the Bialgebra-maps from a lifted initial
𝑇-Algebra to a lifted terminal 𝐹-Coalgebra (by ititiality and finality, respectively) are
equal [2, p. 73]. In the previous section we got lifted initials in Coalgs( ̂𝐹 ) and terminals in
Algs( ̂𝑇 ), respectively. In order to talk about morphisms between them however, we need
to work in the same category. Therefore, in the following we prove Coalgs( ̂𝐹 ) ≅ Algs( ̂𝑇 ).

3.5 Equivalences Bialgs(𝜇, 𝐹 , 𝑇 ) ≅ Coalgs( ̂𝐹 ) ≅ Algs( ̂𝑇 )

See Categories.Category.Construction.mu-Bialgebras

I started out my formalization by defining the category of Bialgebras “on foot”. How-
ever it turns out that in practice you’ll want to use either one of the two representations
Coalgs( ̂𝐹 ) ≅ Algs( ̂𝑇 ) equivalent to it, as you are then reasoning in the (Co)Algebra cat-
egory instead of in the underlying category 𝒞. Since depending on what we are doing
one or the other representation is more convenient, we need a way to convert between
the two. Enter Equivalences of Categories.
We say two categories 𝒞, 𝒟 are equivalent if there exist functors 𝐹∶ 𝒞 → 𝒟, 𝐺∶ 𝒟 → 𝒞
such that 𝐹 ∘ 𝐺 ≃ 1𝒟, and 𝐺 ∘ 𝐹 ≃ 1𝒞, where 1⋅ is the Identity functor for a given
category and ⋅ ≃ ⋅ is a natural isomorphism between functors.
There was essentially only a single interesting detail, in the conversion Coalgs( ̂𝐹 ) ⇔
Algs( ̂𝑇 ), all the rest just came down to using the right (fields of) identities.

3.5.1 Converting between objects Coalgs( ̂𝐹 ) ⇔ Algs( ̂𝑇 )

Consider below objects in the respective categories. The (Co)Algebras have been colored
red while the (Co)Algebra-Morphisms are black. Notice that in the the two diagrams,
the 𝒞-morphisms (𝑎, 𝑐) switch roles.

𝑇 𝑋 𝑇 𝐹𝑋

𝐹𝑇 𝑋

𝑋 𝐹𝑋

𝑇 𝑐

𝑎

𝜇𝑋

𝐹𝑎

𝑐

𝑋 𝑇 𝑋

𝑇 𝐹𝑋

𝐹𝑋 𝐹𝑇 𝑋

𝑐

𝑇 𝑐

𝑎

𝜇𝑋

𝐹𝑎

As a diagram the right one can be produced by rotating the left one clockwise by one
arrow. This seems simple enough, but this is because we have flattened everything down
to the underlying category 𝒞. The corresponding transformation in agda code (annoted
with (… = a/c) to reconnect it to the above diagrams) is the following:

F₀ = λ X → record
{ A = to-Coalgebra $ (F-Algebra-Morphism.f $ F-Coalgebra.α X = c)
; α = record
{ f = (F-Algebra.α $ F-Coalgebra.A X = a)
; commutes = F-Algebra-Morphism.commutes (F-Coalgebra.α X) ○ assoc
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}
}

I call particular attention to the use of ○ assoc in the proof: The obligation that
𝑐 ∘𝑎 = 𝐹𝑎∘ ̂𝑇 𝑐 = 𝐹𝑎∘ (𝜇𝑋 ∘𝑇 𝑐) can be produced from the premise that 𝑐 ∘𝑎 = ̂𝐹𝑎∘𝑇 𝑐 =
(𝐹𝑎 ∘ 𝜇𝑋) ∘ 𝑇 𝑐 by transitivity of equality (_○_) and associativity of ∘ (assoc).

3.6 Final theorem
As mentioned at the end of Section 3.4, we prove that the Bialgebra-maps from a lifted
initial 𝑇-Algebra to a lifted terminal 𝐹-Coalgebra (by ititiality and finality, respectively)
are equal [2, p. 73]. We obtain our lifted initial object in Coalgs( ̂𝐹 ) and our lifted
terminal in Algs( ̂𝑇 ). We then need to conjugate the objects and morphisms in question
to arrive at an equality in the same category (I chose to “transport” the lifted terminal
object over into Coalgs( ̂𝐹 ), but the dual to that would be an equivalent option). For
brevity’s sake I have introduced the following abbreviations:

A2C = AlgebrasT̂ ⇒CoalgebrasF̂

C2A = CoalgebrasF̂ ⇒AlgebrasT̂

Then the final theorem states: ⦅ A2C₀ ⊤ ⦆ ≈ A2C₁ 〖 C2A₀ ⊥ 〗 ∘ id⇒A2C∘C2A ⊥

The full agda code:

module _ (μT : Initial (F-Algebras T)) (νF : Terminal (F-Coalgebras F)) where
open Functor
open Initial (liftInitial T F μ μT)
open Terminal (liftTerminal T F μ νF)
open Category (F-Coalgebras (LiftAlgebras T F μ))

open StrongEquivalence CoalgebrasF̂ ⇔AlgebrasT̂
private

module μT̂ = IsInitial ⊥-is-initial

module νF̂ = IsTerminal ⊤-is-terminal

A2C = AlgebrasT̂ ⇒CoalgebrasF̂

C2A = CoalgebrasF̂ ⇒AlgebrasT̂
id⇒A2C∘C2A : ∀ ( X : Obj ) → X ⇒ ((A2C ∘F C2A) .F₀ X)
id⇒A2C∘C2A = G∘F≈id.⇐.η

-- implicit args to `!` supplied here for clarity
-- ⦅ A2C₀ ⊤ ⦆ ≈ A2C₁ 〖 C2A₀ ⊥ 〗 ∘ id⇒A2C∘C2A ⊥

centralTheorem : μT̂ .! {A = A2C .F₀ ⊤} ≈ A2C. F₁ (νF̂ .! {A = C2A .F₀ ⊥}) ∘ id⇒A2C∘C2A ⊥

centralTheorem = μT̂ .!-unique (A2C. F₁ νF̂ .! ∘ id⇒A2C∘C2A ⊥)

Below we present the theorem (modulo equivalences of categories, and where ⊤, ⊥ re-
fer are the non-lifted (co)initial objects) in diagrammatic form. With ⋆ we refer to
⦅〖 ̂𝑇 ⊤〗⦆ / 〖⦅ ̂𝐹⊥⦆〗.
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𝑇 ⊥ 𝑇 ⊤

⊥ ⊤

𝐹⊥ 𝐹⊤

𝑇 𝐹⊥ 𝑇 𝐹⊤

𝑇 ⋆

in

𝑇⦅ ̂𝐹⊥⦆

〖 ̂𝑇 ⊤〗

𝑇out

⦅〖 ̂𝑇 ⊤〗⦆

〖⦅ ̂𝐹⊥⦆〗
⦅ ̂𝐹⊥⦆ out

𝐹⋆̂𝐹 in

𝑇 𝐹⋆

𝐹〖 ̂𝑇 ⊤〗∘𝜇⊤

4 What I learned about working with Agda
As mentioned at the end of Section 3.3, working with agda felt more like interacting
with a proof checker than a proof assistant. If I was already confident of what a proof
term should be, I was able to provide it and Agda would confirm that it fit. Sometimes
the error messages helped me discover the issue was (s.a. that a term needed to be
re-associated), but this was no simple feat. In general, having had experience with proof
assistants such as Coq or Isabelle I missed amenities that allow more direct manipulations
of the proof state such as simplify in, and interactive commands such as Check or
Search.
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6 Reflection
During my research internship, I worked on formalizing the theory of bialgebras and
distributive laws in Agda. Although I had no previous experience in programming and
proving in Agda, I was able to learn it relatively quickly. One of the challenges that
I encountered was the suboptimal ergonomics of theorem proving. Nevertheless, I was
able to formalize a nice, self-contained subset of definitions and proofs. However, I only
formalized simple distributive laws and did not instantiate the theorems as they were
used in [2] in the analysis of sorting algorithms.

On the practical side, I was provided with a workplace in an office which I shared with
PhD students at the chair. Next to the fact that this was a very nice working situation
for me, it also provided the opportunity to discuss my research with other people at the
chair, at the weekly seminar or during lunch/coffee breaks, notably with Niels van der
Weide. Next to the offline interactions, I was able to interact online with members of
the Agda community on the Agda Zulip and on my pull request on Github.

Looking ahead to my Master thesis and my future career, I want to continue exploring
the applications of category theory to algorithm and programming language analysis and
design. Furthermore, I want to expand my categorical toolbox and be able to recognize
and apply more theorems, definitions, and constructions from Category Theory.

For my Master thesis, I would like to stay within the university and continue analyzing
“sorting” categorically, although (also in the service of time and rapid prototyping) I no
longer plan on formalizing my definitions and proofs.

Overall, my research internship was a valuable experience, as I was able to learn a new
programming language and formalize/prove some interesting constructions/theorems.
This experience has prepared me for future research and academic work, and I am
looking forward to applying these skills to future projects.
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