Intrinsically Correct Sorting in Cubical Agda

Cass Alexandru' Vikraman Choudhury? Jurriaan Rot?
Niels van der Weide?

'RPTU Kaiserslautern-Landau
2University of Bologna & INRIA OLAS

3Radboud University Nijmegen

Certified Programs and Proofs 2025

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Motivation

m “Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Motivation

m “Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)
m Bialgebraic semantics (Turi and Plotkin 1997)

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Motivation

m “Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)
m Bialgebraic semantics (Turi and Plotkin 1997)

m Intrinsic Correctness: Type and specification (predicates), program and
proof are intertwined, Cubical Agda: Dependent Types & Path types

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Motivation

m “Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)
m Bialgebraic semantics (Turi and Plotkin 1997)

m Intrinsic Correctness: Type and specification (predicates), program and
proof are intertwined, Cubical Agda: Dependent Types & Path types

m Contribution: intrinsic verification of business logics & setting in which
correctness of the dual algorithms follows

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Motivation

m “Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)
m Bialgebraic semantics (Turi and Plotkin 1997)

m Intrinsic Correctness: Type and specification (predicates), program and
proof are intertwined, Cubical Agda: Dependent Types & Path types

m Contribution: intrinsic verification of business logics & setting in which
correctness of the dual algorithms follows

m Key idea: Index data by the multiset of their elements

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Outline

Sorting as an Index-Preserving Map

Recap of “Sorting with Bialgebras and Distributive Laws”
m Base Functors
m Bialgebraic Semantics

Correct Sorting using Distributive Laws
m Base Functors for Element-Indexed (Ordered) Lists

m The FMSet Index as a Termination Measure

Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Sorting as an Index-Preserving Map

Sorting as an Index-Preserving Map

Alexandru et al. (RPTU & UniBo & R Correct Sorting in Cubical Agda CPP 2025

Sorting as an Index-Preserving Map

Specification of Sorting

m Totally ordered Carrier Set A

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Sorting as an Index serving Map

Specification of Sorting

m Totally ordered Carrier Set A
m sort: List A— List A?

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Sorting as an Index-Preserving Map

Specification of Sorting

m Totally ordered Carrier Set A
m sort: List A— List A?
m sort: List A — Ordered List A?

Alexandru et al. (RPTU & UniBo & RU) Correct Sort Cubical Agda CPP 2025

Sorting as an Index-Preserving Map

Specification of Sorting

m Totally ordered Carrier Set A

m sort: List A— List A?

m sort: List A — Ordered List A?

m “The output should be a permutation of the input”

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Sorting as an Index-Preserving Map

Specification of Sorting

m Totally ordered Carrier Set A
m sort: List A— List A?
m sort: List A — Ordered List A?

m “The output should be a permutation of the input”
m “Mapping a list to the multiset of its elements is invariant under sorting”

List A sort Ordered List A
elem Ats
Multiset A

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Sorting as an Index-Preserving Map

Specification of Sorting

m Totally ordered Carrier Set A
m sort: List A— List A?
m sort: List A — Ordered List A?

m “The output should be a permutation of the input”
m “Mapping a list to the multiset of its elements is invariant under sorting”

List A sort Ordered List A
elem Ats
Multiset A

m Intrinsically: “Sorting is an index-preserving map between lists and
ordered lists indexed by the finite multiset of their elements”

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Sorting as an Index-Preserving Map

Specification of Sorting

m Totally ordered Carrier Set A
m sort: List A— List A?
m sort: List A — Ordered List A?

m “The output should be a permutation of the input”
m “Mapping a list to the multiset of its elements is invariant under sorting”

List A sort Ordered List A
elem Ats
Multiset A

m Intrinsically: “Sorting is an index-preserving map between lists and
ordered lists indexed by the finite multiset of their elements”

{g : FMSet A} — ElList g — OElIList g

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics

Outline

Recap of “Sorting with Bialgebras and Distributive Laws”
m Base Functors
m Bialgebraic Semantics

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Distr Laws as Business Logics Base Functors

Outline

Recap of “Sorting with Bialgebras and Distributive Laws”
m Base Functors

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Base Functors

Base Functors of Recursive Datatypes

m Recursive datatypes have a shape given by a base functor F’
m E.g. Natural numbers: (1 + —). Lists of element type A: (1 4+ A x —).

m Recursive datatype is given by fixpoint of composition of base functor
Fwith itself

B Least fixpoint (uF): Inductive datatype. Greatest (v F): coinductive —
not neccessarily well founded

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Bialgebraic Semantics

Outline

Recap of “Sorting with Bialgebras and Distributive Laws”

m Bialgebraic Semantics

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Bialgebraic Semantics

Maps Between Recursive Datatypes

m Rec F — Rec G

Alexandru et al. (RPTU & UniBo & R Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Bialgebraic Semantics

Maps Between Recursive Datatypes

m Rec F— Rec G
m Algebraically: fold alg where alg : F (Rec G) — Rec G

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Bialgebraic Semantics

Maps Between Recursive Datatypes

m Rec F— Rec G
m Algebraically: fold alg where alg : F (Rec G) — Rec G

m Coalgebraically: unfold coalg where coalg : Rec F — G (Rec F)

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Bialgebraic Semantics

Maps Between Recursive Datatypes

m Rec F— Rec G
m Algebraically: fold alg where alg : F (Rec G) — Rec G
m Coalgebraically: unfold coalg where coalg : Rec F — G (Rec F)

E A way that gives us both...

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Bialgebraic Semantics

Insertion- / Bubble Sort

(Hinze et al. 2012)

data L (r: Type) : Type where -- aliasing
[J :Lr O-=L
i tA—>r—Lr pattern _<::_ X XS = X :: XS

swap: V{x} - L(Ox)— O(Lx)
swap [] = []

swap (a:: []) = a =[]

swap (a:: (b <::r)) with a <?= b
.]inl asb = a <:: (b == r)

b <:(a::r)

..|inr bs=a

IA

insertSort = fold (unfold (swap - L, out))
bubbleSort = unfold (fold (O, in - swap))

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Bialgebraic Semantics

Insertion- / Bubble Sort

(Hinze et al. 2012)

data L (r: Type) : Type where -- aliasing
[J :Lr O-=L
i tA—>r—Lr pattern _<::_ X XS = X :: XS

swap: V{x} - L(Ox)— O(Lx)
swap [] = []

swap (a []) = a=:[]

swap (a:: (b <::r)) with a <?= b
<:(b ::r)

= (b :r)

.| inl asb =

a
..|inr b=a =la

IA

insertSort = fold (unfold (swap - L, out))
bubbleSort = unfold (fold (O, in - swap))

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Bialgebraic Semantics

Insertion- / Bubble Sort

(Hinze et al. 2012)

data L (r: Type) : Type where -- aliasing
[J :Lr O-=L
i tA—>r—Lr pattern _<::_ X XS = X :: XS

swap: V{x} - L(Ox)— O(Lx)
swap [] = []

swap (a :: []) = ']

swap (a:: (b <::r)) with a <?= b
.jinl asb =la <:(a = r)

Zl(b b r)

..|inr bs=a

a

IA

insertSort = fold (unfold (swap - L, out))
bubbleSort = unfold (fold (O, in - swap))

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Distr Laws as Business Logics Bialgebraic Semantics

Insertion- / Bubble Sort

(Hinze et al. 2012)

data L (r: Type) : Type where -- aliasing
[J :Lr O-=L
i tA—>r—Lr pattern _<::_ X XS = X :: XS

swap: V{x} - L(Ox)— O(Lx)
swap [] = []

swap (a:: []) = []

swap (a:: (b <::r)) with a <?= b
.]inl asb = a <::(a = r)

Zl(b b r)

..|inr bs=a

a

IA

insertSort = fold (unfold (swap - L, out))
bubbleSort = lunfold (fold (O, in - swap))

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law

Outline

Correct Sorting using Distributive Laws
m Base Functors for Element-Indexed (Ordered) Lists
m The FMSet Index as a Termination Measure

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet QIT

Outline

Correct Sorting using Distributive Laws
m Base Functors for Element-Indexed (Ordered) Lists

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet QIT

The Finite Multiset Quotient Inductive Type

(Choudhury and Fiore 2023)

data FMSet (A : Type ¢) : Type £ where
(] : FMSet A
i i (x:A)— (xs: FMSet A) — FMSet A
comm:V{xyxs}— x:yixs=y:x:ixs
trunc : isSet (FMSet A)

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda

CPP 2025

Totally Correct Sorting from a Distr. Law FMSet QIT

The Finite Multiset Quotient Inductive Type
(Choudhury and Fiore 2023)

data FMSet (A : Type ¢) : Type £ where
(] : FMSet A
i i (x:A)— (xs: FMSet A) — FMSet A
comm:V{xyxs}— x:yixs=y:x:ixs
trunc : isSet (FMSet A)

1:2:23::[]=(cong (T::_)comm) 1::3::2::(]

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda

CPP 2025

Totally Correct Sorting from a Distr. Law FMSet QIT

The Finite Multiset Quotient Inductive Type

(Choudhury and Fiore 2023)

data FMSet (A : Type ¢) : Type £ where
(] : FMSet A
i i (x:A)— (xs: FMSet A) — FMSet A
comm:V{xyxs}— x:yixs=y:x:ixs
trunc : isSet (FMSet A)

1:2:3:[]=(cong (1::_)comm) 1::3::2:]]

pattern []JM =[]

pattern _=:M _ x xs = x :: xs

CPP 2025

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda

Totally Correct Sorting from a Distr. Law FMSet QIT

Base Functors for (Ordered) Element-Indexed Lists

dataL (r: Type) : Type where
(] :Lr
A — r —Lr

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet QIT

Base Functors for (Ordered) Element-Indexed Lists

data L
(]

data L
(]

(r: Type) : Type where
:Lr
:A — r —Lr

(r: FMSet A— Type) : FMSet A— Type where
:Lr [IM
cvigl— (x: A) — (rg) —Lrx=Mg

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet QIT

Base Functors for (Ordered) Element-Indexed Lists

data L
(]

data L
(]

data O
(]

(r: Type) : Type where
:Lr
CA —r —Lr
(r: FMSet A— Type) : FMSet A— Type where
:Lr [IM
cvigl— (x: A) — (rg) —Lrx=Mg
(r: FMSet A— Type) : FMSet A— Type where
:0r M

Vg i A — (r g) — Allx=)g —Or (x:DM g

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

Outline

Correct Sorting using Distributive Laws

m The FMSet Index as a Termination Measure

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

The FMSet Index as a Termination Measure

L-coalgebras are well founded

pattern _:: " xxsg=_::_{g=g}xxs

unfoldL : {r : FMSet A — Type} —
(Vi{g.}—(r g&)—Lr g)— (vigl— (rg — ElList g)
unfoldL grow { } seed with grow seed

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

The FMSet Index as a Termination Measure

L-coalgebras are well founded

pattern _:: " xxsg=_::_{g=g}xxs
unfoldL : {r : FMSet A — Type} —

(Vi{g.}—(r g&)—Lr g)— (vigl— (rg — ElList g)
unfoldL grow { } seed with grow seed

m Index-preservation forces index of seed and grow seed to coincide

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

The FMSet Index as a Termination Measure

L-coalgebras are well founded

pattern _:: " xxsg=_::_{g=g}xxs

unfoldL : {r : FMSet A — Type} —
(Vig.}—(r g)—Lr g)—(V{gl— (rg — Ellistg)

unfoldL grow { } seed with grow seed
unfoldL grow {[])(} B | [l =
unfoldL grow {x =M g’} _ | x:seed” " g =

m Index-preservation forces index of seed and grow seed to coincide

m with-abstraction: Pattern matching refines earlier arguments,
propagates information about the indexee back to the index

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

The FMSet Index as a Termination Measure

L-coalgebras are well founded

pattern _:: " xxsg=_::_{g=g}xxs

unfoldL : {r : FMSet A — Type} —
(Vig.}—(r g)—Lr g)—(V{gl— (rg — Ellistg)

unfoldL grow { } seed with grow seed
unfoldL grow {[]M} _ | [l =]
unfoldL grow {x =M g’} _ | x:seed " g =

x :: unfoldL grow {g’} seed’

m Index-preservation forces index of seed and grow seed to coincide

m with-abstraction: Pattern matching refines earlier arguments,
propagates information about the indexee back to the index

m Index of recursive argument is smaller

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

Well Founded Recursion

m Syntactic termination checking based on dot-patterns of HITs
inconsistent (Pitts 2020)

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

Well Founded Recursion

m Syntactic termination checking based on dot-patterns of HITs
inconsistent (Pitts 2020)

m Define a family of maps indexed by FMSet A by well founded induction
on the length of the index

Alexandru et al. (RPTU & UniBo & RU)

Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

Well Founded Recursion

m Syntactic termination checking based on dot-patterns of HITs
inconsistent (Pitts 2020)

m Define a family of maps indexed by FMSet A by well founded induction
on the length of the index

m length defined by eliminating from FMSet A as the free commutative
monoid to (N, +) by Aa — 1

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

swap, Revisited

swap : {r : FMSet A — Type} {g: FMSet A} —
LOrg—O(Lrg

swap [] - []

swap (a :: []) (=[] [1-A

swap (a:: (b <:r) a<#r) with a <?= b

...]inl asb = (a s..(b.. r)) $ asb <::# as#r

.linrbsa=(b<::(a::r))$ bsa::-A as#r €
subst (O (L _)) comm

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

swap, Revisited

swap : {r : FMSet A — Type} {g: FMSet A} —
LOrg—O(Lrg

swap [] - []

swap (a :: []) (=[] [1-A

swap (a:: (b <:r) a<#r) with a <?= b
..|inlasb = (a <:: (b::r))$ asb <::# as#r

.linrbsa=(b<::(a::r))$ bsa::-A as#r €
subst (O (L _)) comm

m Evaluation of subst ...?

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

swap, Revisited

swap : {r : FMSet A — Type} {g: FMSet A} —
LOrg—0(Lng

swap [] = []

swap (a :: []) (=) [-A

swap (a:: (b <:r) a<#r) with a <?= b
..|inlasb = (a <:: (b::r))$ asb <::# as#r
.linrbsa=(b<::(a::r))$ bsa::-A as#r €

subst (O (L _)) comm

m Evaluation of subst ...?
m transpX-O (An — ...)i0 ... (Cavallo and Harper 2019)

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Totally Correct Sorting from a Distr. Law FMSet for Termination

swap, Revisited

swap : {r : FMSet A — Type} {g: FMSet A} —
LOrg—O(Lrg

swap [] - []

swap (a :: []) = (a=:[]) [J-A

swap (a :: (b <:: r) as#r) with a <?= b
..|inlasb = (a <:: (b::r))$ asb <::# as#r
.linrbsa=(b<::(a::r))$ bsa::-A as#r €
subst (O (L _)) comm

m Evaluation of subst ...?
m transpX-O (An — ...)i0 ... (Cavallo and Harper 2019)
m Discard index with tolList : {g : FMSet A} — OEIlList g — List A

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Conclusion & Future Work

Outline

Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & ¢ ct Sorting in Cubical Agda CPP 2025

Conclusion & Future Work

Conclusion

m Indexing by FMSet allowed expressing orderedness,
element-preservation & acted as termination measure

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Conclusion & Future Work

Conclusion

m Indexing by FMSet allowed expressing orderedness,
element-preservation & acted as termination measure

m Intrinsically correct algorithms from correct distr. law

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Conclusion & Future Work

Conclusion

m Indexing by FMSet allowed expressing orderedness,
element-preservation & acted as termination measure

m Intrinsically correct algorithms from correct distr. law

m For verified quick/treesort & heapsort following (Hinze et al. 2012),
semantics via slice category — see paper

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025

Conclusion & Future Work

Future Work

m Conditions under which coalgebras are recursive in an indexed/fibered
setting

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

Conclusion & Future Work

Future Work

m Conditions under which coalgebras are recursive in an indexed/fibered
setting

B More algorithms to verify with a distributive law as business logic

Alexandru et al. (RPTU & UniBo & RU) ¢ ct S in Cubical Agda CPP 2025

	Sorting as an Index-Preserving Map
	Recap of "Sorting with Bialgebras and Distributive Laws"
	Base Functors
	Bialgebraic Semantics

	Correct Sorting using Distributive Laws
	Base Functors for Element-Indexed (Ordered) Lists
	The FMSet Index as a Termination Measure

	Conclusion & Future Work

