
Natural Transformations as Business Logics: An
Operational Intuition.

Cass Alexandru

2025-01-10

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 1 / 29

Motivation

“Sorting with Bialgebras and Distributive Laws” (HJHWM, 2012)
NLFPD ’24: I gave a talk abt bialgebraic semantics
There: Post-hoc analysis of recursion behavior of sorting algs
Contrived introductory examples: length, replicate
This talk: Bottom-up operational intuition for distr. laws as business
logic
Revisit and uncontrive length, replicate examples
Haskell examples again using the recursion-schemes library
Less Category Theory, more TikZ animations

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 2 / 29

Recap

Structure

1 Recap: Structured (Co)Recursion

2 Natural Transformations: Swapping Base Functors

3 Distributive Laws: Swapping Base Functor Compositions

4 Recursive Coalgebras as the Ur-Notion of Structured Recursion

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 3 / 29

Recap

Base Functors of Recursive Datatypes

Recursive datatypes have a shape given by a base functor 𝐹
E.g. Natural numbers: (1+−). Lists of element type 𝐴: (1+𝐴×−).
Recursive datatype is given by fixpoint of composition of base functor
𝐹 with itself
Least fixpoint: Inductive datatype. Greatest: coinductive – not nec.
well founded

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 4 / 29

Recap

Induction

Can eliminate (map out of) a recursive datatype
Algebra: Compositionally interpret syntax to a domain by giving it
semantics, giving each constructor an interpretation.
Roll up the datatype from the base cases (Bottom-up).

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 5 / 29

Recap

Functions Replace Constructors

List
:

1 :

2 :

3 :

4 []

Traversals
length

_ n -> 1+n

1 _ n -> 1+n

2 _ n -> 1+n

3 _ n -> 1+n

4 0

filter p

g p

1 g p

2 g p

3 g p

4 []

g p x xs =

(if p x then [x] else [])

++ xs

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 6 / 29

Recap

Example Evaluation of filter even

g even x xs =

(if even x then [x] else []) ++ xs

g even

1 g even

2 g even

3 g even

4 []

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 7 / 29

Recap

Example Evaluation of filter even

g even x xs =

(if even x then [x] else []) ++ xs

g even

1 g even

2 g even

3 4:[]

4 []

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 7 / 29

Recap

Example Evaluation of filter even

g even x xs =

(if even x then [x] else []) ++ xs

g even

1 g even

2 4:[]

3 4:[]

4 []

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 7 / 29

Recap

Example Evaluation of filter even

g even x xs =

(if even x then [x] else []) ++ xs

g even

1 2:4:[]

2 4:[]

3 4:[]

4 []

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 7 / 29

Recap

Example Evaluation of filter even

g even x xs =

(if even x then [x] else []) ++ xs

2:4:[]

1 2:4:[]

2 4:[]

3 4:[]

4 []

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 7 / 29

Recap

Coinduction

Map into a recursive datatype
Coalgebra: From a seed, create one level of the datatype, with new
seeds at recursive positions
Iteratively apply until base cases are reached
NB: Base cases may not be reached! → non well founded trees

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 8 / 29

Recap

Example: Growing a Fibonacci Tree

5

()

()

()

() ()

()

()

() ()

()

()

() ()

()

fib :: Nat -> TreeF () Nat

fib = \case

0 -> NodeF () []

1 -> NodeF () []

n -> NodeF () [n-1,n-2]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 9 / 29

Recap

Example: Growing a Fibonacci Tree

()

4

()

()

() ()

()

()

() ()

3

()

() ()

()

fib :: Nat -> TreeF () Nat

fib = \case

0 -> NodeF () []

1 -> NodeF () []

n -> NodeF () [n-1,n-2]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 9 / 29

Recap

Example: Growing a Fibonacci Tree

()

()

3

()

() ()

()

2

() ()

()

2

() ()

1

fib :: Nat -> TreeF () Nat

fib = \case

0 -> NodeF () []

1 -> NodeF () []

n -> NodeF () [n-1,n-2]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 9 / 29

Recap

Example: Growing a Fibonacci Tree

()

()

()

2

() ()

1

()

1 0

()

()

1 0

()

fib :: Nat -> TreeF () Nat

fib = \case

0 -> NodeF () []

1 -> NodeF () []

n -> NodeF () [n-1,n-2]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 9 / 29

Recap

Example: Growing a Fibonacci Tree

()

()

()

()

1 0

()

()

() ()

()

()

() ()

()

fib :: Nat -> TreeF () Nat

fib = \case

0 -> NodeF () []

1 -> NodeF () []

n -> NodeF () [n-1,n-2]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 9 / 29

Recap

Example: Growing a Fibonacci Tree

()

()

()

()

() ()

()

()

() ()

()

()

() ()

()

fib :: Nat -> TreeF () Nat

fib = \case

0 -> NodeF () []

1 -> NodeF () []

n -> NodeF () [n-1,n-2]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 9 / 29

Recap

Example: Growing a BST with partition

2 : 5 : 4 : 1 : 3 : []

1

○ 2

○ ○

4

○ 5

○ ○

partition :: (Ord a) =>

[a] -> (TreeF a) [a]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 10 / 29

Recap

Example: Growing a BST with partition

3

2 : 1 : []

○ 2

○ ○

5 : 4 : []

○ 5

○ ○

partition :: (Ord a) =>

[a] -> (TreeF a) [a]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 10 / 29

Recap

Example: Growing a BST with partition

3

1

[] 2 : []

○ ○

4

[] 5 : []

○ ○

partition :: (Ord a) =>

[a] -> (TreeF a) [a]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 10 / 29

Recap

Example: Growing a BST with partition

3

1

○ 2

[] []

4

○ 5

[] []

partition :: (Ord a) =>

[a] -> (TreeF a) [a]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 10 / 29

Recap

Example: Growing a BST with partition

3

1

○ 2

○ ○

4

○ 5

○ ○

partition :: (Ord a) =>

[a] -> (TreeF a) [a]

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 10 / 29

Nat. Trans. : Swapping Base Functors

Structure

1 Recap: Structured (Co)Recursion

2 Natural Transformations: Swapping Base Functors

3 Distributive Laws: Swapping Base Functor Compositions

4 Recursive Coalgebras as the Ur-Notion of Structured Recursion

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 11 / 29

Nat. Trans. : Swapping Base Functors

Maps Between Recursive Datatypes

Rec F -> Rec G

Algebraically: F (Rec G) -> Rec G

Coalgebraically: Rec F -> G (Rec F)

A secret third option?

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 12 / 29

Nat. Trans. : Swapping Base Functors

Natural Transformations

𝛿 ∶ 𝐹 ⇒ 𝐺

𝐹𝑋 𝐺𝑋

𝐹𝑌 𝐺𝑌

𝐹𝑓

𝛿𝑋

𝐺𝑓
𝛿𝑌

type f :=> g = (Functor f, Functor g) =>

forall a. f a -> g a

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 13 / 29

Nat. Trans. : Swapping Base Functors

Natural Transformations

𝛿 ∶ 𝐹 ⇒ 𝐺

𝐹𝑋 𝐺𝑋

𝐹𝑌 𝐺𝑌

𝐹𝑓

𝛿𝑋

𝐺𝑓
𝛿𝑌

type f :=> g = (Functor f, Functor g) =>

forall a. f a -> g a

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 13 / 29

Nat. Trans. : Swapping Base Functors

Natural Transformations

𝛿 ∶ 𝐹 ⇒ 𝐺

𝐹𝑋 𝐺𝑋

𝐹𝑌 𝐺𝑌

𝐹𝑓

𝛿𝑋

𝐺𝑓
𝛿𝑌

type f :=> g = (Functor f, Functor g) =>

forall a. f a -> g a

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 13 / 29

Nat. Trans. : Swapping Base Functors

Natural Transformations

𝛿 ∶ 𝐹 ⇒ 𝐺

𝐹𝑋 𝐺𝑋

𝐹𝑌 𝐺𝑌

𝐹𝑓

𝛿𝑋

𝐺𝑓
𝛿𝑌

type f :=> g = (Functor f, Functor g) =>

forall a. f a -> g a

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 13 / 29

Nat. Trans. : Swapping Base Functors

Natural Transformations

𝛿 ∶ 𝐹 ⇒ 𝐺

𝐹𝑋 𝐺𝑋

𝐹𝑌 𝐺𝑌

𝐹𝑓

𝛿𝑋

𝐺𝑓
𝛿𝑌

type f :=> g = (Functor f, Functor g) =>

forall a. f a -> g a

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 13 / 29

Nat. Trans. : Swapping Base Functors

length & replicate

forget :: ListF a :=> NatF

forget = \case

Nil -> Zero

Cons _ x -> Suc x

deco :: a -> NatF :=> (ListF a)

deco e = \case

Zero -> Nil

Suc x -> Cons e x

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 14 / 29

Nat. Trans. : Swapping Base Functors

Bottom-up

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 15 / 29

Nat. Trans. : Swapping Base Functors

Bottom-up

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 15 / 29

Nat. Trans. : Swapping Base Functors

Bottom-up

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 15 / 29

Nat. Trans. : Swapping Base Functors

Bottom-up

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 15 / 29

Nat. Trans. : Swapping Base Functors

Bottom-up

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 15 / 29

Nat. Trans. : Swapping Base Functors

Bottom-up

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 15 / 29

Nat. Trans. : Swapping Base Functors

Bottom-up

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 15 / 29

Nat. Trans. : Swapping Base Functors

Bottom-up

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 15 / 29

Nat. Trans. : Swapping Base Functors

Top-down

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 16 / 29

Nat. Trans. : Swapping Base Functors

Top-down

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 16 / 29

Nat. Trans. : Swapping Base Functors

Top-down

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 16 / 29

Nat. Trans. : Swapping Base Functors

Top-down

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 16 / 29

Nat. Trans. : Swapping Base Functors

Top-down

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 16 / 29

Nat. Trans. : Swapping Base Functors

Top-down

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 16 / 29

Nat. Trans. : Swapping Base Functors

Top-down

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 16 / 29

Nat. Trans. : Swapping Base Functors

Top-down

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 16 / 29

Nat. Trans. : Swapping Base Functors

Natural Transformation Semantics

natSem :: forall μf νg . (Recursive μf, Corecursive νg) =>

(Base μf :=> Base νg) -> μf -> νg

natSem δ = fold @μf alg where

alg :: (Base μf) νg -> νg

alg = embed @νg . δ

coNatSem :: forall μf νg . (Recursive μf, Corecursive νg) =>

(Base μf :=> Base νg) -> μf -> νg

coNatSem δ = unfold @νg coalg where

coalg :: μf -> (Base νg) μf

coalg = δ @μf . project

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 17 / 29

Nat. Trans. : Swapping Base Functors

NB: For natSem, we used embed from the recursion-schemes library
Corresponds to the initial algebra ⇒ νg isn’t actually codata
For coNatSem we used unfold. But (δ @μf . project) is a recursive
coalgebra (transposition proposition in (Eppendahl, 2000))
Both of these semantics go between carriers of initial algebras, so
data, not codata

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 18 / 29

Distr. Laws. : Swapping Base Functor Comp.

Structure

1 Recap: Structured (Co)Recursion

2 Natural Transformations: Swapping Base Functors

3 Distributive Laws: Swapping Base Functor Compositions

4 Recursive Coalgebras as the Ur-Notion of Structured Recursion

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 19 / 29

Distr. Laws. : Swapping Base Functor Comp.

Distributive Laws

𝐹𝐺 ⇒ 𝐺𝐹

type DistrLaw = (Functor f, Functor g) =>

forall a. f (g a) -> g (f a)

Alternatively:
type DistrLaw' = f `Compose` g :=> g `Compose` f

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 20 / 29

Distr. Laws. : Swapping Base Functor Comp.

Distributive Laws

𝐹𝐺 ⇒ 𝐺𝐹
type DistrLaw = (Functor f, Functor g) =>

forall a. f (g a) -> g (f a)

Alternatively:
type DistrLaw' = f `Compose` g :=> g `Compose` f

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 20 / 29

Distr. Laws. : Swapping Base Functor Comp.

Distributive Laws

𝐹𝐺 ⇒ 𝐺𝐹
type DistrLaw = (Functor f, Functor g) =>

forall a. f (g a) -> g (f a)

Alternatively:
type DistrLaw' = f `Compose` g :=> g `Compose` f

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 20 / 29

Distr. Laws. : Swapping Base Functor Comp.

Distributive Laws

𝐹𝐺 ⇒ 𝐺𝐹
type DistrLaw = (Functor f, Functor g) =>

forall a. f (g a) -> g (f a)

Alternatively:
type DistrLaw' = f `Compose` g :=> g `Compose` f

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 20 / 29

Distr. Laws. : Swapping Base Functor Comp.

Distributive Laws

𝐹𝐺 ⇒ 𝐺𝐹
type DistrLaw = (Functor f, Functor g) =>

forall a. f (g a) -> g (f a)

Alternatively:
type DistrLaw' = f `Compose` g :=> g `Compose` f

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 20 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Top-Down 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 21 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Bottom-up 2

inner
outer

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 22 / 29

Distr. Laws. : Swapping Base Functor Comp.

Insights

Early termination avails only in the nested coalgebraic step

→ +

Lazy evaluation: Variant with outer unfold is always incremental,
outer fold is (in general) monolithic

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 23 / 29

Distr. Laws. : Swapping Base Functor Comp.

Example: Insertion- / Selection Sort

σ :: (Ord a) => L a (O a r) -> Either (O a (L a r)) (O a (O a r))

σ = \case

Nil -> Nil

a `Cons` Nil -> a `OCons` Nil

a `Cons` (b `OCons` r)

| a <= b -> Right $ a `OCons` b `OCons` r

| otherwise -> Left $ b `OCons` a `Cons` r

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 24 / 29

Distr. Laws. : Swapping Base Functor Comp.

Applications

Recent paper “Intrinsically Correct Sorting in Cubical Agda”
(Alexandru and Choudhury and Rot and van der Weide, CPP ’25)
more in-depth on verified bialgebraic sorting algorithms
encoding invariants in base functors led to the coincidence of partial
and total correctness I talked about at NLFPD ’24
makes the input/output base functors meaningfully different
(otherwise just aliased)
correctness of BL in form of distr. law yields correctness of entire
algorithm (both variants)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 25 / 29

Rec. Coalgs: Ur-Structured Recursion

Structure

1 Recap: Structured (Co)Recursion

2 Natural Transformations: Swapping Base Functors

3 Distributive Laws: Swapping Base Functor Compositions

4 Recursive Coalgebras as the Ur-Notion of Structured Recursion

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 26 / 29

Rec. Coalgs: Ur-Structured Recursion

The Cata is a Lie

𝐹𝜇𝐹 𝐹𝑋

𝜇𝐹 𝑋

in

𝐹?

𝑎

?
in−1

? ≔ 𝑎 ∘ 𝐹? ∘ in−1

Coalgebra-to-algebra morphism from recursive coalgebra in−1

“We believe that, as long as structured recursion is concerned,
recursive coalgebras are a more basic concept than initial algebras” –
(Capretta and Uustalu and Vene, 2004)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 27 / 29

Rec. Coalgs: Ur-Structured Recursion

The Cata is a Lie

𝐹𝜇𝐹 𝐹𝑋

𝜇𝐹 𝑋

in

𝐹?

𝑎

?
in−1

? ≔ 𝑎 ∘ 𝐹? ∘ in−1

Coalgebra-to-algebra morphism from recursive coalgebra in−1

“We believe that, as long as structured recursion is concerned,
recursive coalgebras are a more basic concept than initial algebras” –
(Capretta and Uustalu and Vene, 2004)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 27 / 29

Rec. Coalgs: Ur-Structured Recursion

The Cata is a Lie

𝐹𝜇𝐹 𝐹𝑋

𝜇𝐹 𝑋

in

𝐹?

𝑎

?
in−1

? ≔ 𝑎 ∘ 𝐹? ∘ in−1

Coalgebra-to-algebra morphism from recursive coalgebra in−1

“We believe that, as long as structured recursion is concerned,
recursive coalgebras are a more basic concept than initial algebras” –
(Capretta and Uustalu and Vene, 2004)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 27 / 29

Rec. Coalgs: Ur-Structured Recursion

The Cata is a Lie

𝐹𝜇𝐹 𝐹𝑋

𝜇𝐹 𝑋

in

𝐹?

𝑎

?
in−1

? ≔ 𝑎 ∘ 𝐹? ∘ in−1

Coalgebra-to-algebra morphism from recursive coalgebra in−1

“We believe that, as long as structured recursion is concerned,
recursive coalgebras are a more basic concept than initial algebras” –
(Capretta and Uustalu and Vene, 2004)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 27 / 29

Rec. Coalgs: Ur-Structured Recursion

The Cata is a Lie

𝐹𝜇𝐹 𝐹𝑋

𝜇𝐹 𝑋

in

𝐹?

𝑎

?
in−1

? ≔ 𝑎 ∘ 𝐹? ∘ in−1

Coalgebra-to-algebra morphism from recursive coalgebra in−1

“We believe that, as long as structured recursion is concerned,
recursive coalgebras are a more basic concept than initial algebras” –
(Capretta and Uustalu and Vene, 2004)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 27 / 29

Rec. Coalgs: Ur-Structured Recursion

Future Work

No proof assistant will recognize unfolds of rec. coalgs as terminating

This holds for both basic rec. coalgs s.a. the inverse of an initial
algebra, as well as those constructed from modular parts as in
(Capretta and Uustalu and Vene, 2004), (Hinze and Wu and Gibbons,
2015)
Termination checking in general is non-compositional and syntactic –
I’m hoping to look into if rec. coalgs can change that
More future work: More algorithms with BL in form of nat. trans. –
simple, distr. law, or: distr. law with coherence conditions (comonad
over a functor, etc.) (Turi and Plotkin, ’97)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 28 / 29

Rec. Coalgs: Ur-Structured Recursion

Future Work

No proof assistant will recognize unfolds of rec. coalgs as terminating
This holds for both basic rec. coalgs s.a. the inverse of an initial
algebra, as well as those constructed from modular parts as in
(Capretta and Uustalu and Vene, 2004), (Hinze and Wu and Gibbons,
2015)

Termination checking in general is non-compositional and syntactic –
I’m hoping to look into if rec. coalgs can change that
More future work: More algorithms with BL in form of nat. trans. –
simple, distr. law, or: distr. law with coherence conditions (comonad
over a functor, etc.) (Turi and Plotkin, ’97)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 28 / 29

Rec. Coalgs: Ur-Structured Recursion

Future Work

No proof assistant will recognize unfolds of rec. coalgs as terminating
This holds for both basic rec. coalgs s.a. the inverse of an initial
algebra, as well as those constructed from modular parts as in
(Capretta and Uustalu and Vene, 2004), (Hinze and Wu and Gibbons,
2015)
Termination checking in general is non-compositional and syntactic –
I’m hoping to look into if rec. coalgs can change that

More future work: More algorithms with BL in form of nat. trans. –
simple, distr. law, or: distr. law with coherence conditions (comonad
over a functor, etc.) (Turi and Plotkin, ’97)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 28 / 29

Rec. Coalgs: Ur-Structured Recursion

Future Work

No proof assistant will recognize unfolds of rec. coalgs as terminating
This holds for both basic rec. coalgs s.a. the inverse of an initial
algebra, as well as those constructed from modular parts as in
(Capretta and Uustalu and Vene, 2004), (Hinze and Wu and Gibbons,
2015)
Termination checking in general is non-compositional and syntactic –
I’m hoping to look into if rec. coalgs can change that
More future work: More algorithms with BL in form of nat. trans. –
simple, distr. law, or: distr. law with coherence conditions (comonad
over a functor, etc.) (Turi and Plotkin, ’97)

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 28 / 29

Rec. Coalgs: Ur-Structured Recursion

@cxandru@types.pl

cxandru.ee

Cass Alexandru Nat. Trans. as BL: Operational Intuition 2025-01-10 29 / 29

	Recap: Structured (Co)Recursion
	Natural Transformations: Swapping Base Functors
	Distributive Laws: Swapping Base Functor Compositions
	Recursive Coalgebras as the Ur-Notion of Structured Recursion

