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Motivation

m Divide-and-Conquer algorithms are captured by the
category-theoretical notion of coalgebra-to-algebra morphisms

m In the context of total functional programming (i.e. algorithms proven
to terminate), these arise from recursive coalgebras

m However: Lack of criteria for proving “recursivity” of a coalgebra, in
particular amenable to formalization in a dependetly typed fp
language (s.a. Agda)

m This talk:

m Motivation for Divide-and-Conquer Algorithms, categorically
m How proving partial correctness sets the stage for expressing...
m our novel categorical criterion for termination of such algorithms!
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Divide and Conquer

Divide and Conquer “Divide and Conquer”

m A D&C algorithm can be split into the following steps:
m Divide input into “smaller"linputs;
m Recursively apply the algorithm to them;
m Combine to compute the result.

lthis is a Chekov's gun
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Divide and Conquer

Case Studies: Quick- and Mergesort

m Algorithms can differ in which step does the “heavy lifting”

m Quicksort: Main logic in the divide step: partition elements around
the pivot. Combine step: concatenation.

m Mergesort: Business end is the combine step: zipping two ordered
lists into one. Divide step: Splitting the list in half.
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m Coalgebra c : Divide input up into smaller inputs, the distribution of
which is given by a functor F!

m Fh: Apply h recursively under F;

m Algebra a: Combine an F-structure of the results of recursive calls to

obtain the output.
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Divide and Conquer

D& CAs as Coalgebra-to-Algebra Morphisms

FI -t FO
T la
I---"50

m A coalgebra c is called recursive if, for every algebra a, it admits a
unique solution to the equation?

h=c;Fh;a

m NB: In a language permitting general recursion, the above may be
read as a definition.

2sometimes called the “hylo” equation
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Example: QuickSort

Narrowing our focus

m As mentionend, the interesting step of quicksort is the divide step, i.e.
partitioning a list around a pivot.

m We therefore focus on that step from now.
m partition: ListA — 1 4 ListA x A x ListA ...
m ...= Functor Flis: FX=14+XxAXx X
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Example: QuickSort

Example: Growing a BST with partition

2:5:4:1:3:[] partition: ListA —
O + ListA x A x ListA
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Example: QuickSort

Example: Growing a BST with partition

3 partition: ListA —
/ \ O + ListA x A x ListA4
1 4
VRN VRN
(1 2 : ] (] 5: 0
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Example: QuickSort

Example: Growing a BST with partition

3 partition: ListA —

1 NG 4 O + ListA x A x ListA
O/ \2 O/ \5
[]/ \[] []/ \[]
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Example: QuickSort

Example: Growing a BST with partition

3 partition: ListA —

1 NG 4 O + ListA x A x ListA
SN SN,
O/ \O O/ \O
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Example: QuickSort

Partial Correctness of Quicksort

m Orderedness: The elements to the left/right of the pivot in the
List A x (p: A) x List A case are smaller/greater than p

m Element-preservation: partition(xs) and xs have the same multiset of
elements.

m Working in the setting of data with mappings to the multiset (MA)
of their elements allows us to express both these properties!
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Example: QuickSort
Sliced Partition

m Redefine partition for (X, f: X — MA).

m We define the Predicate lifting:
~y+ (P:A— Bool) = MA — Bool

Pyxs:=Vz € xs. P(z)
m We can then lift F'to MA-indexed sets (X, f: X — MA) as:

P =) (T s )

m Note: The multiset indices of the recursive positions are smaller than

the outer index: |f(),|f(r)| < |f())w{p} W f(r)].
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WDYM recursive positions? WDYM smaller?

How to express “the indices of the recursive positions are

smaller than the outer index”

Notation

For i € I, we denote by <i :={j € I | j < i} the set of indices strictly
smaller than ¢ (the downset of 7). We have two projection functors:
restriction and evaluation:

X|g= (Xj>j<i ev; X := X,

flei= (fj)j<i ev,f = [
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WDYM recursive positions? WDYM smaller?

Introducing: Well Founded Functors

Definition (Well-Founded Functor)

A functor F: €T — @1 is well-founded if for every i € I, the functor
ev, - F: €1 — € factors through the projection |_,: CT — €<%, that is,
there exists a functor F'_;: such that the diagram below commutes up to

natural isomorphism:

el L el
Vi e I: 7|<il ~ ev;
e<i Ty e
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Introducing: Well Founded Functors

Definition (Well-Founded Functor)

m “The ith output of the functor F'is fully determined by its inputs with
indices j < 2.
m “F: G — @€l is equivalent to a family (F_;: C7<' — ©),,"
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WDYM recursive positions? WDYM smaller?

Minimizing the interface

m We define a canonical way to turn any functor F' into such a family
F_;: (6<" =€), , for which we obtain a projection
epXi: F_;(X| ;)i — FXi.

m Client code of the library then consists of definining an inclusion
e Xi: FXi— F<i(X|_;)i which is an inverse to this.
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WDYM recursive positions? WDYM smaller?

Diagrammatically

Foihli

(Feihloy
(F<ic ‘<z)z — (F<iA ‘<z)z

621T O fi

Vi€ I: FC; ———— FA,
o, — M4,
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(Feihleg)s
(F<ic ‘<z)z — (F<z‘A ‘<z)z

e;lT O lsi

Vi€ I: FC; ———— FA,
o, — " A

m To define h;, we need only A |_; ...

m We can define (h;);c; by well founded induction!
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WDYM recursive positions? WDYM smaller?

Diagrammatically

(Feihleg)s
(F<ic ‘<z)z — (F<z‘A ‘<z)z

e;lT O lsi

Vi€l FC; ———— FA,

i

O, — s A
m To define h;, we need only A |_; ...

m We can define (h;);c; by well founded induction!

m Next: Type-theoretical interface (in Agda).

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09



WDYM recursive positions? WDYM smaller?

Wellfoundification

<: A — Type —— : downset
<i=ZIZ[jeA]l(<i) I<zl o ev;
-—restriction . F,

< (it A) = (A Type) = (< i) — Type) €' =====2 C
[<_i X (., _pf)=Xj

--inclusion (F<i X := F (J< i X) 1)

J<: (it A) = ((< i) — Type) = (A — Type)
J<iXj=X[pfej<i]|X({, pf)

-—truncation: restriction, then inclusion: |< i;J< i ~ T
T:(i: A — (A— Type) — (A — Type)

TiXj=(<i)x Xj-- "annotate with pfs j < i"
--wellfoundification

—b: ((A— Type) = (A — Type)) — ((A — Type) — (A — Type))
(FODXi=FOMj—=0U<i)xXj)i-—=F (TiX) i
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Application to QuickSort

Going Back to Definition-Time with Inversion

dataS (X : M A — Type) : M A — Type where
leaf : S X []
i s MAY = (4 X ) = (x: A) = (t,: X i) —
X i = xCi.—SX(x:=i++1i)
pattern " _[[_[[_"_ iy x t iy pyopp = _[[ ]I {0} {ii} & x oy

Se b {X:MA— Type} = (i: MA) -SXi— (S])Xi

S-e71 ] leaf = leaf

Se s+ i) (67 1T x 1167 i) py o) =
(i<t i, ) 1] x 11 (i<xs i o+ 1)) py o
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Application to QuickSort

Going Back to Definition-Time with Inversion

dataS (X : M A — Type) : M A — Type where
leaf : S X ]
i s MAY = (4 X ) = (x: A) = (t,: X i) —
X i = xCi.—SX(x:=i++1i)
pattern _~_I[_1|__ t, i, x t, i py Py = |11 {i} G} & x 8, py

Se b {X:MA— Type} = (i: MA) -SXi— (S])Xi

S-e71 ] leaf = leaf
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m Pattern match on the value of type X i;
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dataS (X : M A — Type) : M A — Type where
leaf : S X ]
i s MAY = (4 X ) = (x: A) = (t,: X i) —
X i = xCi.—SX(x:=i++1i)
pattern _~_I[_1|__ t, i, x t, i py Py = |11 {i} G} & x 8, py
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m Pattern match on the value of type X i;
m by inversion (Dybjer '94), this will refine the original index (seen here
as dot patterns);
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Application to QuickSort

Going Back to Definition-Time with Inversion

dataS (X : M A — Type) : M A — Type where
leaf : S X ]
i s MAY = (4 X ) = (x: A) = (t,: X i) —
X i = xCi.—SX(x:=i++1i)
pattern _~_I[_1|__ t, i, x t, i py Py = |11 {i} G} & x 8, py

Se b {X:MA— Type} = (i: MA) -SXi— (S])Xi

S-e71 ] leaf = leaf

Sl iy 4 0) (5 " i (Tx 116 7 i) py po) =

(i<t iy, ) [ x 1| (i<x=[ i [+ £,)) Py o

m Pattern match on the value of type X i;

m by inversion (Dybjer '94), this will refine the original index (seen here
as dot patterns);

m prove that the indices in the functorial positions are smaller than the
original, now refined, outer index.
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m We have a new way to express a broad class of algorithms describable
as coalgebra-to-algebra morphisms in a total functional programming
language. More specifically, a novel sufficient criterion for proving &
formalizing recursivity of coalgebras.
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as coalgebra-to-algebra morphisms in a total functional programming
language. More specifically, a novel sufficient criterion for proving &
formalizing recursivity of coalgebras.

m Notable use case: Indices already used for proving functional
properties intrinsically can also serve as a termination measure.
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Conclusion

Conclusion

m We have a new way to express a broad class of algorithms describable
as coalgebra-to-algebra morphisms in a total functional programming
language. More specifically, a novel sufficient criterion for proving &
formalizing recursivity of coalgebras.

m Notable use case: Indices already used for proving functional
properties intrinsically can also serve as a termination measure.

m More applications & corollaries in our draft paper (formalized: correct
GCD, CYK)

DF D
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Conclusion

Other Niceties

m Get the recursive coalgebra counterpart of apomorphisms for free for
the e~ ! definition, also of course, cata (inverse of the initial algebra is
a coalgebra)

m Current code development is in an indexed setting but should transfer
to applications with slice categories in the object language, if one
wants to avoid indexing

m General equational definitions, with the possibility to use facilities for
generic programming for the remaining boilerplate

aiofF, (iuncurry i IH) io Fwf ioci
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Future Work

(Mutual) Nested Recursion

mutual
evA : Env — Assgt — Env
evE : Env — Expr — N

evA env ( x > expr ) = A y — case x &7 y of
M (yes _) — evE env expr
;(no _) —envy}

evE env (x :+: y) = evE env x + evE env y
evE env (Var x) = env x
evE env (Lit n) =

evE env (Let assgt In expr) = evE (evA env assgt) expr
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Future Work

Contact

@cxandru@types.pl
c.alexandru@cs.rptu.de

@cxandru on Discord

cxandru.ee
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