
Intrinsically Recursive Coalgebras

Cass Alexandru Henning Urbat Thorsten Wißmann

2026-01-09

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 1 / 25

Motivation

Divide-and-Conquer algorithms are captured by the
category-theoretical notion of coalgebra-to-algebra morphisms

In the context of total functional programming (i.e. algorithms proven
to terminate), these arise from recursive coalgebras
However: Lack of criteria for proving “recursivity” of a coalgebra, in
particular amenable to formalization in a dependetly typed fp
language (s.a. Agda)
This talk:

Motivation for Divide-and-Conquer Algorithms, categorically
How proving partial correctness sets the stage for expressing…
our novel categorical criterion for termination of such algorithms!

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 2 / 25

Motivation

Divide-and-Conquer algorithms are captured by the
category-theoretical notion of coalgebra-to-algebra morphisms
In the context of total functional programming (i.e. algorithms proven
to terminate), these arise from recursive coalgebras

However: Lack of criteria for proving “recursivity” of a coalgebra, in
particular amenable to formalization in a dependetly typed fp
language (s.a. Agda)
This talk:

Motivation for Divide-and-Conquer Algorithms, categorically
How proving partial correctness sets the stage for expressing…
our novel categorical criterion for termination of such algorithms!

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 2 / 25

Motivation

Divide-and-Conquer algorithms are captured by the
category-theoretical notion of coalgebra-to-algebra morphisms
In the context of total functional programming (i.e. algorithms proven
to terminate), these arise from recursive coalgebras
However: Lack of criteria for proving “recursivity” of a coalgebra, in
particular amenable to formalization in a dependetly typed fp
language (s.a. Agda)

This talk:

Motivation for Divide-and-Conquer Algorithms, categorically
How proving partial correctness sets the stage for expressing…
our novel categorical criterion for termination of such algorithms!

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 2 / 25

Motivation

Divide-and-Conquer algorithms are captured by the
category-theoretical notion of coalgebra-to-algebra morphisms
In the context of total functional programming (i.e. algorithms proven
to terminate), these arise from recursive coalgebras
However: Lack of criteria for proving “recursivity” of a coalgebra, in
particular amenable to formalization in a dependetly typed fp
language (s.a. Agda)
This talk:

Motivation for Divide-and-Conquer Algorithms, categorically
How proving partial correctness sets the stage for expressing…
our novel categorical criterion for termination of such algorithms!

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 2 / 25

Motivation

Divide-and-Conquer algorithms are captured by the
category-theoretical notion of coalgebra-to-algebra morphisms
In the context of total functional programming (i.e. algorithms proven
to terminate), these arise from recursive coalgebras
However: Lack of criteria for proving “recursivity” of a coalgebra, in
particular amenable to formalization in a dependetly typed fp
language (s.a. Agda)
This talk:

Motivation for Divide-and-Conquer Algorithms, categorically

How proving partial correctness sets the stage for expressing…
our novel categorical criterion for termination of such algorithms!

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 2 / 25

Motivation

Divide-and-Conquer algorithms are captured by the
category-theoretical notion of coalgebra-to-algebra morphisms
In the context of total functional programming (i.e. algorithms proven
to terminate), these arise from recursive coalgebras
However: Lack of criteria for proving “recursivity” of a coalgebra, in
particular amenable to formalization in a dependetly typed fp
language (s.a. Agda)
This talk:

Motivation for Divide-and-Conquer Algorithms, categorically
How proving partial correctness sets the stage for expressing…

our novel categorical criterion for termination of such algorithms!

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 2 / 25

Motivation

Divide-and-Conquer algorithms are captured by the
category-theoretical notion of coalgebra-to-algebra morphisms
In the context of total functional programming (i.e. algorithms proven
to terminate), these arise from recursive coalgebras
However: Lack of criteria for proving “recursivity” of a coalgebra, in
particular amenable to formalization in a dependetly typed fp
language (s.a. Agda)
This talk:

Motivation for Divide-and-Conquer Algorithms, categorically
How proving partial correctness sets the stage for expressing…
our novel categorical criterion for termination of such algorithms!

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 2 / 25

Divide and Conquer

Structure

1 Divide and Conquer

2 Example: QuickSort

3 WDYM recursive positions? WDYM smaller?

4 Application to QuickSort

5 Conclusion

6 Future Work

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 3 / 25

Divide and Conquer

Divide and Conquer “Divide and Conquer”

A D&C algorithm can be split into the following steps:

Divide input into “smaller”1inputs;
Recursively apply the algorithm to them;
Combine to compute the result.

1this is a Chekov’s gun
CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 4 / 25

Divide and Conquer

Divide and Conquer “Divide and Conquer”

A D&C algorithm can be split into the following steps:
Divide input into “smaller”1inputs;

Recursively apply the algorithm to them;
Combine to compute the result.

1this is a Chekov’s gun
CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 4 / 25

Divide and Conquer

Divide and Conquer “Divide and Conquer”

A D&C algorithm can be split into the following steps:
Divide input into “smaller”1inputs;
Recursively apply the algorithm to them;

Combine to compute the result.

1this is a Chekov’s gun
CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 4 / 25

Divide and Conquer

Divide and Conquer “Divide and Conquer”

A D&C algorithm can be split into the following steps:
Divide input into “smaller”1inputs;
Recursively apply the algorithm to them;
Combine to compute the result.

1this is a Chekov’s gun
CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 4 / 25

Divide and Conquer

Case Studies: Quick- and Mergesort

Algorithms can differ in which step does the “heavy lifting”

Quicksort: Main logic in the divide step: partition elements around
the pivot. Combine step: concatenation.
Mergesort: Business end is the combine step: zipping two ordered
lists into one. Divide step: Splitting the list in half.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 5 / 25

Divide and Conquer

Case Studies: Quick- and Mergesort

Algorithms can differ in which step does the “heavy lifting”
Quicksort: Main logic in the divide step: partition elements around
the pivot. Combine step: concatenation.

Mergesort: Business end is the combine step: zipping two ordered
lists into one. Divide step: Splitting the list in half.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 5 / 25

Divide and Conquer

Case Studies: Quick- and Mergesort

Algorithms can differ in which step does the “heavy lifting”
Quicksort: Main logic in the divide step: partition elements around
the pivot. Combine step: concatenation.
Mergesort: Business end is the combine step: zipping two ordered
lists into one. Divide step: Splitting the list in half.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 5 / 25

Divide and Conquer

D&CAs as Coalgebra-to-Algebra Morphisms

𝐹𝐼 𝐹𝑂

𝐼 𝑂

𝐹ℎ

𝑎𝑐

ℎ

Coalgebra 𝑐 : Divide input up into smaller inputs, the distribution of
which is given by a functor 𝐹;
𝐹ℎ: Apply ℎ recursively under 𝐹;
Algebra 𝑎: Combine an 𝐹-structure of the results of recursive calls to
obtain the output.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 6 / 25

Divide and Conquer

D&CAs as Coalgebra-to-Algebra Morphisms

𝐹𝐼 𝐹𝑂

𝐼 𝑂

𝐹ℎ

𝑎𝑐

ℎ

Coalgebra 𝑐 : Divide input up into smaller inputs, the distribution of
which is given by a functor 𝐹;

𝐹ℎ: Apply ℎ recursively under 𝐹;
Algebra 𝑎: Combine an 𝐹-structure of the results of recursive calls to
obtain the output.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 6 / 25

Divide and Conquer

D&CAs as Coalgebra-to-Algebra Morphisms

𝐹𝐼 𝐹𝑂

𝐼 𝑂

𝐹ℎ

𝑎𝑐

ℎ

Coalgebra 𝑐 : Divide input up into smaller inputs, the distribution of
which is given by a functor 𝐹;
𝐹ℎ: Apply ℎ recursively under 𝐹;

Algebra 𝑎: Combine an 𝐹-structure of the results of recursive calls to
obtain the output.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 6 / 25

Divide and Conquer

D&CAs as Coalgebra-to-Algebra Morphisms

𝐹𝐼 𝐹𝑂

𝐼 𝑂

𝐹ℎ

𝑎𝑐

ℎ

Coalgebra 𝑐 : Divide input up into smaller inputs, the distribution of
which is given by a functor 𝐹;
𝐹ℎ: Apply ℎ recursively under 𝐹;
Algebra 𝑎: Combine an 𝐹-structure of the results of recursive calls to
obtain the output.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 6 / 25

Divide and Conquer

D&CAs as Coalgebra-to-Algebra Morphisms

𝐹𝐼 𝐹𝑂

𝐼 𝑂

𝐹ℎ

𝑎𝑐

ℎ

A coalgebra 𝑐 is called recursive if, for every algebra 𝑎, it admits a
unique solution to the equation2

ℎ = 𝑐; 𝐹ℎ; 𝑎

NB: In a language permitting general recursion, the above may be
read as a definition.

2sometimes called the “hylo” equation
CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 6 / 25

Divide and Conquer

D&CAs as Coalgebra-to-Algebra Morphisms

𝐹𝐼 𝐹𝑂

𝐼 𝑂

𝐹ℎ

𝑎𝑐

ℎ

A coalgebra 𝑐 is called recursive if, for every algebra 𝑎, it admits a
unique solution to the equation2

ℎ = 𝑐; 𝐹ℎ; 𝑎

NB: In a language permitting general recursion, the above may be
read as a definition.

2sometimes called the “hylo” equation
CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 6 / 25

Example: QuickSort

Structure

1 Divide and Conquer

2 Example: QuickSort

3 WDYM recursive positions? WDYM smaller?

4 Application to QuickSort

5 Conclusion

6 Future Work

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 7 / 25

Example: QuickSort

Narrowing our focus

As mentionend, the interesting step of quicksort is the divide step, i.e.
partitioning a list around a pivot.

We therefore focus on that step from now.
partition ∶ List𝐴 → 1 + List𝐴 × 𝐴 × List𝐴 …
… ⇒ Functor 𝐹 is: 𝐹𝑋 = 1 + 𝑋 × 𝐴 × 𝑋

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 8 / 25

Example: QuickSort

Narrowing our focus

As mentionend, the interesting step of quicksort is the divide step, i.e.
partitioning a list around a pivot.
We therefore focus on that step from now.

partition ∶ List𝐴 → 1 + List𝐴 × 𝐴 × List𝐴 …
… ⇒ Functor 𝐹 is: 𝐹𝑋 = 1 + 𝑋 × 𝐴 × 𝑋

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 8 / 25

Example: QuickSort

Narrowing our focus

As mentionend, the interesting step of quicksort is the divide step, i.e.
partitioning a list around a pivot.
We therefore focus on that step from now.
partition ∶ List𝐴 → 1 + List𝐴 × 𝐴 × List𝐴 …

… ⇒ Functor 𝐹 is: 𝐹𝑋 = 1 + 𝑋 × 𝐴 × 𝑋

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 8 / 25

Example: QuickSort

Narrowing our focus

As mentionend, the interesting step of quicksort is the divide step, i.e.
partitioning a list around a pivot.
We therefore focus on that step from now.
partition ∶ List𝐴 → 1 + List𝐴 × 𝐴 × List𝐴 …
… ⇒ Functor 𝐹 is: 𝐹𝑋 = 1 + 𝑋 × 𝐴 × 𝑋

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 8 / 25

Example: QuickSort

Example: Growing a BST with partition

2 : 5 : 4 : 1 : 3 : []

1

○ 2

○ ○

4

○ 5

○ ○

partition ∶ List𝐴 →
○ + List𝐴 × 𝐴 × List𝐴

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 9 / 25

Example: QuickSort

Example: Growing a BST with partition

3

2 : 1 : []

○ 2

○ ○

5 : 4 : []

○ 5

○ ○

partition ∶ List𝐴 →
○ + List𝐴 × 𝐴 × List𝐴

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 9 / 25

Example: QuickSort

Example: Growing a BST with partition

3

1

[] 2 : []

○ ○

4

[] 5 : []

○ ○

partition ∶ List𝐴 →
○ + List𝐴 × 𝐴 × List𝐴

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 9 / 25

Example: QuickSort

Example: Growing a BST with partition

3

1

○ 2

[] []

4

○ 5

[] []

partition ∶ List𝐴 →
○ + List𝐴 × 𝐴 × List𝐴

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 9 / 25

Example: QuickSort

Example: Growing a BST with partition

3

1

○ 2

○ ○

4

○ 5

○ ○

partition ∶ List𝐴 →
○ + List𝐴 × 𝐴 × List𝐴

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 9 / 25

Example: QuickSort

Partial Correctness of Quicksort

Orderedness: The elements to the left/right of the pivot in the
List 𝐴 × (𝑝 ∶ 𝐴) × List 𝐴 case are smaller/greater than 𝑝
Element-preservation: partition(𝑥𝑠) and 𝑥𝑠 have the same multiset of
elements.
Working in the setting of data with mappings to the multiset (ℳ𝐴)
of their elements allows us to express both these properties!

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 10 / 25

Example: QuickSort

Sliced Partition

Redefine partition for (𝑋, 𝑓∶ 𝑋 → ℳ𝐴).
We define the Predicate lifting:

–# ∶ (𝑃 ∶ 𝐴 → Bool) → ℳ𝐴 → Bool
𝑃#𝑥𝑠 ≔ ∀𝑥 ∈ 𝑥𝑠. 𝑃 (𝑥)
We can then lift 𝐹 to ℳ𝐴-indexed sets (𝑋, 𝑓∶ 𝑋 → ℳ𝐴) as:

̄𝐹 (𝑋
𝑓) ≔ (1

∅)+({(𝑙, 𝑝, 𝑟) ∈ 𝑋 × 𝐴 × 𝑋 ∣ 𝑓(𝑙) ≤# 𝑝 ∧ 𝑝 ># 𝑓(𝑟)}
𝑓(𝑙) ⊎ {𝑝} ⊎ 𝑓(𝑟))

Note: The multiset indices of the recursive positions are smaller than
the outer index: |𝑓(𝑙)|, |𝑓(𝑟)| < |𝑓(𝑙) ⊎ {𝑝} ⊎ 𝑓(𝑟)|.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 11 / 25

WDYM recursive positions? WDYM smaller?

Structure

1 Divide and Conquer

2 Example: QuickSort

3 WDYM recursive positions? WDYM smaller?

4 Application to QuickSort

5 Conclusion

6 Future Work

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 12 / 25

WDYM recursive positions? WDYM smaller?

How to express “the indices of the recursive positions are
smaller than the outer index”

Notation
For 𝑖 ∈ 𝐼, we denote by <𝑖 ∶= {𝑗 ∈ 𝐼 ∣ 𝑗 < 𝑖} the set of indices strictly
smaller than 𝑖 (the downset of 𝑖). We have two projection functors:
restriction and evaluation:

– ∣<𝑖 ∶ 𝒞𝐼 → 𝒞<𝑖 ev𝑖 ∶ 𝒞𝐼 → 𝒞
𝑋 ∣<𝑖 ≔ (𝑋𝑗)𝑗<𝑖 ev𝑖𝑋 ≔ 𝑋𝑖
𝑓 ∣<𝑖 ≔ (𝑓𝑗)𝑗<𝑖 ev𝑖𝑓 ≔ 𝑓𝑖

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 13 / 25

WDYM recursive positions? WDYM smaller?

Introducing: Well Founded Functors

Definition (Well-Founded Functor)

A functor 𝐹∶ 𝒞𝐼 → 𝒞𝐼 is well-founded if for every 𝑖 ∈ 𝐼, the functor
ev𝑖 ⋅ 𝐹 ∶ 𝒞𝐼 → 𝒞 factors through the projection ∣<𝑖 ∶ 𝒞𝐼 → 𝒞<𝑖, that is,
there exists a functor 𝐹<𝑖 ∶ such that the diagram below commutes up to
natural isomorphism:

∀𝑖 ∈ 𝐼∶
𝒞𝐼 𝒞𝐼

𝒞<𝑖 𝒞
≅

𝐹

–∣<𝑖 ev𝑖

∃𝐹<𝑖

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 14 / 25

WDYM recursive positions? WDYM smaller?

Introducing: Well Founded Functors

Definition (Well-Founded Functor)

∀𝑖 ∈ 𝐼∶
𝒞𝐼 𝒞𝐼

𝒞<𝑖 𝒞
≅

𝐹

–∣<𝑖 ev𝑖

∃𝐹<𝑖

“The 𝑖th output of the functor 𝐹 is fully determined by its inputs with
indices 𝑗 < 𝑖.”
“𝐹∶ 𝒞

𝑗∈

𝐼 → 𝒞

𝑖∈

𝐼 is equivalent to a family (𝐹<𝑖 ∶ 𝒞

𝑗

<𝑖 → 𝒞)𝑖∈𝐼”

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 14 / 25

WDYM recursive positions? WDYM smaller?

Introducing: Well Founded Functors

Definition (Well-Founded Functor)

∀𝑖 ∈ 𝐼∶
𝒞𝐼 𝒞𝐼

𝒞<𝑖 𝒞
≅

𝐹

–∣<𝑖 ev𝑖

∃𝐹<𝑖

“The 𝑖th output of the functor 𝐹 is fully determined by its inputs with
indices 𝑗 < 𝑖.”

“𝐹∶ 𝒞

𝑗∈

𝐼 → 𝒞

𝑖∈

𝐼 is equivalent to a family (𝐹<𝑖 ∶ 𝒞

𝑗

<𝑖 → 𝒞)𝑖∈𝐼”

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 14 / 25

WDYM recursive positions? WDYM smaller?

Introducing: Well Founded Functors

Definition (Well-Founded Functor)

∀𝑖 ∈ 𝐼∶
𝒞𝐼 𝒞𝐼

𝒞<𝑖 𝒞
≅

𝐹

–∣<𝑖 ev𝑖

∃𝐹<𝑖

“The 𝑖th output of the functor 𝐹 is fully determined by its inputs with
indices 𝑗 < 𝑖.”
“𝐹∶ 𝒞

𝑗∈

𝐼 → 𝒞

𝑖∈

𝐼 is equivalent to a family (𝐹<𝑖 ∶ 𝒞

𝑗

<𝑖 → 𝒞)𝑖∈𝐼”

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 14 / 25

WDYM recursive positions? WDYM smaller?

Introducing: Well Founded Functors

Definition (Well-Founded Functor)

∀𝑖 ∈ 𝐼∶
𝒞𝐼 𝒞𝐼

𝒞<𝑖 𝒞
≅

𝐹

–∣<𝑖 ev𝑖

∃𝐹<𝑖

“The 𝑖th output of the functor 𝐹 is fully determined by its inputs with
indices 𝑗 < 𝑖.”
“𝐹∶ 𝒞𝑗∈𝐼 → 𝒞𝑖∈𝐼 is equivalent to a family (𝐹<𝑖 ∶ 𝒞𝑗<𝑖 → 𝒞)𝑖∈𝐼”

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 14 / 25

WDYM recursive positions? WDYM smaller?

Minimizing the interface

We define a canonical way to turn any functor 𝐹 into such a family
𝐹<𝑖 ∶ (𝒞<𝑖 → 𝒞)𝑖∈𝐼, for which we obtain a projection
𝜀𝐹𝑋𝑖 ∶ 𝐹<𝑖(𝑋|<𝑖)𝑖 → 𝐹𝑋𝑖.
Client code of the library then consists of definining an inclusion
𝜀−1

𝐹 𝑋𝑖 ∶ 𝐹𝑋𝑖 → 𝐹< 𝑖(𝑋|<𝑖)𝑖 which is an inverse to this.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 15 / 25

WDYM recursive positions? WDYM smaller?

Diagrammatically

∀𝑖 ∈ 𝐼∶

(𝐹<𝑖𝐶 ∣<𝑖)𝑖 (𝐹<𝑖𝐴 ∣<𝑖)𝑖

𝐹𝐶𝑖 𝐹𝐴𝑖

𝐶𝑖 𝐴𝑖

(𝐹<𝑖ℎ∣<𝑖)𝑖

𝜀𝑖

𝐹ℎ𝑖

�𝜀−1
𝑖

𝑎𝑖𝑐𝑖

ℎ𝑖

To define ℎ𝑖, we need only ℎ ∣<𝑖 …
We can define (ℎ𝑖)𝑖∈𝐼 by well founded induction!
Next: Type-theoretical interface (in Agda).

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 16 / 25

WDYM recursive positions? WDYM smaller?

Diagrammatically

∀𝑖 ∈ 𝐼∶

(𝐹<𝑖𝐶 ∣<𝑖)𝑖 (𝐹<𝑖𝐴 ∣<𝑖)𝑖

𝐹𝐶𝑖 𝐹𝐴𝑖

𝐶𝑖 𝐴𝑖

(𝐹<𝑖ℎ∣<𝑖)𝑖

𝜀𝑖

𝐹ℎ𝑖

�𝜀−1
𝑖

𝑎𝑖𝑐𝑖

ℎ𝑖

To define ℎ𝑖, we need only ℎ ∣<𝑖 …

We can define (ℎ𝑖)𝑖∈𝐼 by well founded induction!
Next: Type-theoretical interface (in Agda).

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 16 / 25

WDYM recursive positions? WDYM smaller?

Diagrammatically

∀𝑖 ∈ 𝐼∶

(𝐹<𝑖𝐶 ∣<𝑖)𝑖 (𝐹<𝑖𝐴 ∣<𝑖)𝑖

𝐹𝐶𝑖 𝐹𝐴𝑖

𝐶𝑖 𝐴𝑖

(𝐹<𝑖ℎ∣<𝑖)𝑖

𝜀𝑖

𝐹ℎ𝑖

�𝜀−1
𝑖

𝑎𝑖𝑐𝑖

ℎ𝑖

To define ℎ𝑖, we need only ℎ ∣<𝑖 …
We can define (ℎ𝑖)𝑖∈𝐼 by well founded induction!

Next: Type-theoretical interface (in Agda).

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 16 / 25

WDYM recursive positions? WDYM smaller?

Diagrammatically

∀𝑖 ∈ 𝐼∶

(𝐹<𝑖𝐶 ∣<𝑖)𝑖 (𝐹<𝑖𝐴 ∣<𝑖)𝑖

𝐹𝐶𝑖 𝐹𝐴𝑖

𝐶𝑖 𝐴𝑖

(𝐹<𝑖ℎ∣<𝑖)𝑖

𝜀𝑖

𝐹ℎ𝑖

�𝜀−1
𝑖

𝑎𝑖𝑐𝑖

ℎ𝑖

To define ℎ𝑖, we need only ℎ ∣<𝑖 …
We can define (ℎ𝑖)𝑖∈𝐼 by well founded induction!
Next: Type-theoretical interface (in Agda).

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 16 / 25

WDYM recursive positions? WDYM smaller?

Wellfoundification

< : A → Type -- : downset
< i = Σ[j ∈ A] (j < i)
--restriction
|< : (i : A) → (A → Type) → ((< i) → Type)
|< _i X (j , _pf) = X j
--inclusion (F<i X ≔ F (J< i X) i)
J< : (i : A) → ((< i) → Type) → (A → Type)
J< i X j = Σ[pf ∈ j < i] X (j , pf)
--truncation: restriction, then inclusion: |< i;J< i ≈ T i
T : (i : A) → (A → Type) → (A → Type)
T i X j = (j < i) × X j -- "annotate with pfs j < i"
--wellfoundification
_↓ : ((A → Type) → (A → Type)) → ((A → Type) → (A → Type))
(F ↓) X i = F (𝜆 j → (j < i) × X j) i -- = F (T i X) i

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 17 / 25

𝒞𝐼 𝒞𝐼

𝒞<𝑖 𝒞
≅

𝐹

–∣<𝑖 ev𝑖

𝐹<𝑖

Application to QuickSort

Structure

1 Divide and Conquer

2 Example: QuickSort

3 WDYM recursive positions? WDYM smaller?

4 Application to QuickSort

5 Conclusion

6 Future Work

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 18 / 25

Application to QuickSort

Going Back to Definition-Time with Inversion

data S (X : ℳ A → Type) : ℳ A → Type where
leaf : S X []
|⌈⌉|_ : {i𝑙 i𝑟 : ℳ A} → (t𝑙 : X i𝑙) → (x : A) → (t𝑟 : X i𝑟) →

x ⊐ i𝑙 → x ⊑ i𝑟 → S X (x ∶∶ i𝑙 ++ i𝑟)
pattern _^_|⌈_⌉|_^_ t𝑙 i𝑙 x t𝑟 i𝑟 p1 p2 = _|⌈_⌉|_ {i𝑙} {i𝑟} t𝑙 x t𝑟 p1 p2

S-𝜀−1 : {X : ℳ A → Type} → (i : ℳ A) → S X i → (S ↓) X i
S-𝜀−1 .[] leaf = leaf
S-𝜀−1 .(x ∶∶ i𝑙 ++ i𝑟) ((t𝑙 ^ i𝑙 |⌈ x ⌉| t𝑟 ^ i𝑟) p1 p2) =

((i<x∶∶i++ i𝑟 , t𝑙) |⌈ x ⌉| (i<x∶∶[i𝑙]++i , t𝑟)) p1 p2

Pattern match on the value of type 𝑋 𝑖;
by inversion (Dybjer ’94), this will refine the original index (seen here
as dot patterns);
prove that the indices in the functorial positions are smaller than the
original, now refined, outer index.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 19 / 25

Application to QuickSort

Going Back to Definition-Time with Inversion

data S (X : ℳ A → Type) : ℳ A → Type where
leaf : S X []
|⌈⌉|_ : {i𝑙 i𝑟 : ℳ A} → (t𝑙 : X i𝑙) → (x : A) → (t𝑟 : X i𝑟) →

x ⊐ i𝑙 → x ⊑ i𝑟 → S X (x ∶∶ i𝑙 ++ i𝑟)
pattern _^_|⌈_⌉|_^_ t𝑙 i𝑙 x t𝑟 i𝑟 p1 p2 = _|⌈_⌉|_ {i𝑙} {i𝑟} t𝑙 x t𝑟 p1 p2

S-𝜀−1 : {X : ℳ A → Type} → (i : ℳ A) → S X i → (S ↓) X i
S-𝜀−1 .[] leaf = leaf
S-𝜀−1 .(x ∶∶ i𝑙 ++ i𝑟) ((t𝑙 ^ i𝑙 |⌈ x ⌉| t𝑟 ^ i𝑟) p1 p2) =

((i<x∶∶i++ i𝑟 , t𝑙) |⌈ x ⌉| (i<x∶∶[i𝑙]++i , t𝑟)) p1 p2

Pattern match on the value of type 𝑋 𝑖;

by inversion (Dybjer ’94), this will refine the original index (seen here
as dot patterns);
prove that the indices in the functorial positions are smaller than the
original, now refined, outer index.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 19 / 25

Application to QuickSort

Going Back to Definition-Time with Inversion

data S (X : ℳ A → Type) : ℳ A → Type where
leaf : S X []
|⌈⌉|_ : {i𝑙 i𝑟 : ℳ A} → (t𝑙 : X i𝑙) → (x : A) → (t𝑟 : X i𝑟) →

x ⊐ i𝑙 → x ⊑ i𝑟 → S X (x ∶∶ i𝑙 ++ i𝑟)
pattern _^_|⌈_⌉|_^_ t𝑙 i𝑙 x t𝑟 i𝑟 p1 p2 = _|⌈_⌉|_ {i𝑙} {i𝑟} t𝑙 x t𝑟 p1 p2

S-𝜀−1 : {X : ℳ A → Type} → (i : ℳ A) → S X i → (S ↓) X i
S-𝜀−1 .[] leaf = leaf
S-𝜀−1 .(x ∶∶ i𝑙 ++ i𝑟) ((t𝑙 ^ i𝑙 |⌈ x ⌉| t𝑟 ^ i𝑟) p1 p2) =

((i<x∶∶i++ i𝑟 , t𝑙) |⌈ x ⌉| (i<x∶∶[i𝑙]++i , t𝑟)) p1 p2

Pattern match on the value of type 𝑋 𝑖;
by inversion (Dybjer ’94), this will refine the original index (seen here
as dot patterns);

prove that the indices in the functorial positions are smaller than the
original, now refined, outer index.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 19 / 25

Application to QuickSort

Going Back to Definition-Time with Inversion

data S (X : ℳ A → Type) : ℳ A → Type where
leaf : S X []
|⌈⌉|_ : {i𝑙 i𝑟 : ℳ A} → (t𝑙 : X i𝑙) → (x : A) → (t𝑟 : X i𝑟) →

x ⊐ i𝑙 → x ⊑ i𝑟 → S X (x ∶∶ i𝑙 ++ i𝑟)
pattern _^_|⌈_⌉|_^_ t𝑙 i𝑙 x t𝑟 i𝑟 p1 p2 = _|⌈_⌉|_ {i𝑙} {i𝑟} t𝑙 x t𝑟 p1 p2

S-𝜀−1 : {X : ℳ A → Type} → (i : ℳ A) → S X i → (S ↓) X i
S-𝜀−1 .[] leaf = leaf
S-𝜀−1 .(x ∶∶ i𝑙 ++ i𝑟) ((t𝑙 ^ i𝑙 |⌈ x ⌉| t𝑟 ^ i𝑟) p1 p2) =

((i<x∶∶i++ i𝑟 , t𝑙) |⌈ x ⌉| (i<x∶∶[i𝑙]++i , t𝑟)) p1 p2

Pattern match on the value of type 𝑋 𝑖;
by inversion (Dybjer ’94), this will refine the original index (seen here
as dot patterns);
prove that the indices in the functorial positions are smaller than the
original, now refined, outer index.

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 19 / 25

Conclusion

Structure

1 Divide and Conquer

2 Example: QuickSort

3 WDYM recursive positions? WDYM smaller?

4 Application to QuickSort

5 Conclusion

6 Future Work

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 20 / 25

Conclusion

Conclusion

We have a new way to express a broad class of algorithms describable
as coalgebra-to-algebra morphisms in a total functional programming
language. More specifically, a novel sufficient criterion for proving &
formalizing recursivity of coalgebras.

Notable use case: Indices already used for proving functional
properties intrinsically can also serve as a termination measure.
More applications & corollaries in our draft paper (formalized: correct
GCD, CYK)

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 21 / 25

https://arxiv.org/abs/2512.10748

Conclusion

Conclusion

We have a new way to express a broad class of algorithms describable
as coalgebra-to-algebra morphisms in a total functional programming
language. More specifically, a novel sufficient criterion for proving &
formalizing recursivity of coalgebras.
Notable use case: Indices already used for proving functional
properties intrinsically can also serve as a termination measure.

More applications & corollaries in our draft paper (formalized: correct
GCD, CYK)

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 21 / 25

https://arxiv.org/abs/2512.10748

Conclusion

Conclusion

We have a new way to express a broad class of algorithms describable
as coalgebra-to-algebra morphisms in a total functional programming
language. More specifically, a novel sufficient criterion for proving &
formalizing recursivity of coalgebras.
Notable use case: Indices already used for proving functional
properties intrinsically can also serve as a termination measure.
More applications & corollaries in our draft paper (formalized: correct
GCD, CYK)

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 21 / 25

https://arxiv.org/abs/2512.10748

Conclusion

Other Niceties

Get the recursive coalgebra counterpart of apomorphisms for free for
the 𝜀−1 definition, also of course, cata (inverse of the initial algebra is
a coalgebra)

Current code development is in an indexed setting but should transfer
to applications with slice categories in the object language, if one
wants to avoid indexing
General equational definitions, with the possibility to use facilities for
generic programming for the remaining boilerplate

a i ∘ F1 (iuncurry i IH) i ∘ Fwf i ∘ c i

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 22 / 25

Conclusion

Other Niceties

Get the recursive coalgebra counterpart of apomorphisms for free for
the 𝜀−1 definition, also of course, cata (inverse of the initial algebra is
a coalgebra)
Current code development is in an indexed setting but should transfer
to applications with slice categories in the object language, if one
wants to avoid indexing

General equational definitions, with the possibility to use facilities for
generic programming for the remaining boilerplate

a i ∘ F1 (iuncurry i IH) i ∘ Fwf i ∘ c i

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 22 / 25

Conclusion

Other Niceties

Get the recursive coalgebra counterpart of apomorphisms for free for
the 𝜀−1 definition, also of course, cata (inverse of the initial algebra is
a coalgebra)
Current code development is in an indexed setting but should transfer
to applications with slice categories in the object language, if one
wants to avoid indexing
General equational definitions, with the possibility to use facilities for
generic programming for the remaining boilerplate

a i ∘ F1 (iuncurry i IH) i ∘ Fwf i ∘ c i

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 22 / 25

Future Work

Structure

1 Divide and Conquer

2 Example: QuickSort

3 WDYM recursive positions? WDYM smaller?

4 Application to QuickSort

5 Conclusion

6 Future Work

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 23 / 25

Future Work

(Mutual) Nested Recursion

mutual
evA : Env → Assgt → Env
evE : Env → Expr → ℕ

evA env (x ↦ expr) = 𝜆 y → case x ≈? y of
𝜆{ (yes _) → evE env expr

; (no _) → env y }

evE env (x :+: y) = evE env x + evE env y
evE env (Var x) = env x
evE env (Lit n) = n
evE env (Let assgt In expr) = evE (evA env assgt) expr

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 24 / 25

Future Work

Contact

@cxandru@types.pl
c.alexandru@cs.rptu.de
@cxandru on Discord
cxandru.ee

CA&HU&TW Intrinsically Recursive Coalgebras 2026-01-09 25 / 25

	Divide and Conquer
	Example: QuickSort
	WDYM recursive positions? WDYM smaller?
	Application to QuickSort
	Conclusion
	Future Work

